K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

Ta có : \(A=3+3^2+3^3+...+3^{2009}\)

=> \(3A=3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

=> \(3A-A=\left(3^2+3^3+...+3^{2010}\right)-\left(3+3^2+...+3^{2009}\right)\)

=> \(2A=3^{2010}-3\)

=> \(2A+3=3^{2010}-3+3\)

=> \(2A+3=3^n=3^{2010}\)

=>  \(n=2010\)

26 tháng 1 2016

biết đáp án rồi

 

15 tháng 8 2015

=>3A=32+33+…+32010

=>3A-A=32+33+…+32010-3-32-…-32009

=>2A=32010-3

=>2A+3=32010=3N

=>N=2010

15 tháng 8 2015

A = 3+32+33+......+32009

3A = 32+33+34+......+32010

2A = 3A - A = 32010-3

=> 2A + 3 = 32010

Mà 2A + 3 = 3n

=> n = 2010

3 tháng 4 2016

3A=3^2+3^3+3^4+...+3^2010

2A=3^2010-3

2A+3=3^2010-3+3=3^n

3^2010=3^n

n=2010

3 tháng 4 2016

A=3+3^2+3^3+...+3^2009

=>3A=3^2+3^3+3^4+...+3^2010

=>3A-A=3^2010-3

=>2A=3^2010-3

=>2A+3=3^2010

=>n=2010

4 tháng 4 2016

Ta có : 3A = 32 + 33 + 3+ 35 + .... + 32010

=> 3A - A = 32010 - 3

=> 2A = 32010 - 3

Ta có : 2A + 3 = 3n

=> 32010 - 3 + 3 = 3n

=> 32010 = 3n

=> n = 2010

vậy n = 2010

17 tháng 9 2018

Ta có \(A=3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow3A-A=3^{101}-3\)

\(2A=3^{101}-3\)

Ta có \(2A+3=3^n\)

hay \(3^{101}-3+3=3^n\)

\(3^{101}=3^n\)

\(n=101\)

A=3+32+33+.....+3100

3a=3.(3+32+33+....+3100)

3A=32+33+34+....+3101

3A-A=(32+33+34+....+3101)-(3+32+33+.....+3100)

2A=3101-3

2A+3=3101-3+3

2A+3=3101

3n=3101

=>n\(\in\)(101)

Chúc bn học tốt

21 tháng 7 2015

Cho biểu thức M mà lại biết 2A. Câu này mới

28 tháng 8 2017

\(3A=3^2+3^3+3^4+...+3^{100}.\)

\(\Rightarrow2A=3A-A=3^{100}-3\)

\(\Rightarrow2A+3=3^{100}+3-3=3^{100}=3^n\Rightarrow n=100\)

14 tháng 6 2016

              \(A=3+3^2+3^3+...+3^{100}\)

      \(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)

      \(\Rightarrow2A=3^{101}-3\)

      Ta có:

           \(2A+3=3n\)

\(3^{101}-3+3=3n\)

                \(3^{101}=3n\) 

                      \(n=3^{101}:3\)

                      \(n=3^{100}\)

14 tháng 6 2016

\(3A=3^2+3^3+3^4+....+3^{101}\)

\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+3^4+....+3^{100}\right)\)

\(2A=3^{101}-3\)

\(A=\frac{3^{101}-3}{2}\)

thay \(A=\frac{3^{101}-3}{2}\)vào 2A + 3 = 3n ta được

\(2.\frac{3^{101}-3}{2}+3=3n\)

\(3^{101}-3+3=3n\)

\(3^{101}=3n=>n=3^{101}:3=3^{100}\)

27 tháng 7 2020

Bài làm:

a) \(A=3+3^2+3^3+...+3^{99}+3^{100}\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{100}+3^{101}\)

\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3\)

\(\Leftrightarrow A=\frac{3^{101}-3}{2}\)

b) Mk tịt ngòi nhé

c) \(2A+3=3^n\)

\(\Leftrightarrow3^{101}-3+3=3^n\)

\(\Leftrightarrow3^{101}=3^n\)

\(\Rightarrow n=101\)

27 tháng 7 2020

b) Ta có: \(A=3+3^2+3^3+...+3^{100}\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)

\(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(A=4\left(3+3^3+3^5+...+3^{99}\right)⋮4\)

=> đpcm

15 tháng 3 2017

Ta có :

A=3+32+...+32015

=> 3A-A=32+33+...+32016- (3+32+...+32015)

=>2A=32016-3

lại có: 2A+3=3n

=>32016-3+3=3n

=>32016=3n

=>n=2016

Vậy n=2016