K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2018

Bạn tham khảo ở đây: Câu hỏi của Mật khẩu trên 6 kí tự - Toán lớp 6 - Học toán với OnlineMath

21 tháng 10 2023

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

1 tháng 11 2015

c)D=4+42+43+44+...+42012

D=(4+42)+(43+44)+...+(42011+42012)

D=4.5+43.5+45.5+...+42011.5

D=5.(4+43+42011)

=>D chia hết cho 5

=>ĐPCM

1 tháng 11 2015

tất cả đều có trong câu hỏi tương tự

16 tháng 11 2018

1:\(A=1+3+3^2+3^3+...+3^{11}\)

\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)

\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)

\(A=4+3^2\cdot4+....+3^{10}\cdot4\)

\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4

Vì ta có 4 chia hết cho 4 => A có chia hết cho 4

Vậy A chia hết cho 4

16 tháng 11 2018

2:

\(C=5+5^2+5^3+...+5^8\) chia hết cho 30

\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)

\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)

\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)

\(C=30\cdot\left(5^2+...+5^6\right)\)

Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30

Vậy C có chia hết cho 30

17 tháng 12 2023

Số số hạng của A:

98 - 1 + 1 = 98 (số)

Do 98 ⋮ 2 nên ta có thể nhóm các số hạng của A thành các nhóm mà mỗi nhóm có 2 số hạng như sau:

A = (5 + 5²) + (5³ + 5⁴) + ... + (5⁹⁷ + 5⁹⁸)

= 5.(1 + 5) + 5³.(1 + 5) + ... + 5⁹⁷.(1 + 5)

= 5.6 + 5³.6 + ... + 5⁹⁷.6

= 6.(5 + 5³ + ... + 5⁹⁷) ⋮ 6

Vậy A ⋮ 6

17 tháng 12 2023

A=(5+5^2)+(5^3+5^4)+...+(5^97+5^98)

A=5(1+5)+5^3(1+5)+...+5^97(1+5)

A=(5.6)+(5^3.6)+...+(5^97.6)

A=6.(5+5^3+...+5^97)

suy ra A⋮6

Suy ra A

10 tháng 12 2015

S=5+5^2+5^3+....+5^96= 
= 5+5^2+5^3+ 5^4+5^5+5^6....+ +5^91 + 5^92+5^93 +5^94 +5^95 +5^96 
=(5+5^2+5^3+ 5^4+5^5+5^6)(1+5^6 + ... +5^90)= 
=5* 126*31*(1+5^6 + ... +5^90)= 5* 126*31*(1+5^4 + ... +5^90) chia hết cho 126 

 

10 tháng 12 2015

Bạn gộp 6 số lại là được 

26 tháng 11 2015

1) \(5+5^2+5^3+.....+5^{12}=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)

\(=30.1+5^2.30+.....+5^{10}.30=30.\left(1+5^2+....+5^{10}\right)\)

Vậy chia hết cho 30

\(5+5^2+5^3+....+5^{12}=\left(5+5^2+5^3\right)+.....+\left(5^{10}+5^{11}+5^{12}\right)\)

\(=5.31+5^4.31+....+5^{10}.31=31.\left(5+5^4+....+5^{10}\right)\)

Vậy chia hết cho 31

 

4 tháng 1 2017

haizzzzzzzzzzz câu 2 làm tek nào z

20 tháng 1 2017

Ta có:

3a + 18b = 3(a + 6b) = 3[(a + b) + 5b]

Mà a + b \(⋮\) 5 và 5b \(⋮\) 5

=> (a + b) + 5b \(⋮\) 5

=> 3[(a + b) + 5b] \(⋮\) 5

=> 3a + 18b \(⋮\) 5 (đpcm)

20 tháng 1 2017

3a + 18b = 3(a + b) + 15b

Mà (a + b) chia hết cho 5 và 15b chia hết cho 6 nên 3a + 18b chia hết cho 5