K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2017

a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^

2 tháng 4 2016

Ta có : a+5b chia hết cho 7

=> 4.(a+5b) chia hết cho 5

=> 4a+20b chia hết cho 7

Mà 14a+ 21b chia hết cho 7

=> (14a+21b) - ( 4a+20b)chia hết cho 7

=> 10a+b chia hết cho 7

22 tháng 2 2016

Chưa phân loại

Cre : Trần Thị Loan hoặc #OLM

22 tháng 2 2016

Ta có :a+5b chia hết cho 7

\(\Rightarrow\)10* [a+5b] chia hết 7

Ta có 10*[a+5b]-[10a+b]

\(\Rightarrow\)10a+50b-10a-b

\(\Rightarrow\)49b

Vì 49 chia hết 7 nên 10a+b chia hết cho 7

Vậy ta có điều chứng minh

19 tháng 4 2016

Ta có a-11b+3c chia hết cho 17 => 2a+22b+6c cũng chia hết cho 17

Ta có 2a+22b+6c+2a-5b+6c=17b chia hết cho 17

=> 2a-5b+6c chia hết cho 17

30 tháng 1 2017

Gọi 2 số cần tìm lần lượt là a,b.

theo đề bài ta có:

20(a+b)=140(a-b)=7ab

=> \(\frac{20\left(a+b\right)}{140}=\frac{140\left(a-b\right)}{140}=\frac{7ab}{140}\)

=>\(\frac{a+b}{7}=\frac{a-b}{1}=\frac{ab}{20}\)(1)

theo t/c của dãy ..... ta có:

\(\frac{a+b}{7}=\frac{a-b}{1}=\frac{ab}{20}=\frac{a+b+a-b}{7+1}=\frac{2a}{8}=\frac{a}{4}\)

Do đó:

\(\frac{ab}{20}=\frac{a}{4}\)

=> 4ab=20a

=> b=20a:4a=5

thay b=5 vào (1) ta được

bạn tự thay rồi tính tiếp.

b)

ta có:

a+5b\(⋮\)7

=> 10a+50b\(⋮7\)

=>\(\left(10a+b\right)+49b⋮7\)

=>10+b\(⋮7\) vì 49b\(⋮7\)

vậy ...