Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AIH=góc AKH=góc KAI=90 độ
=>AIHK là hcn
b: AIHK là hcn
=>góc AIK=góc AHK=góc C
=>ΔAIK đồng dạng với ΔACB
a.Xét tứ giác AIHK có: góc BAC=AIH=AKH=90 ĐỘ
Suy ra AIHK là hình chữ nhật
b.Gọi O là giao điểm của 2 đường chéo hình AIHK
Ta có góc AIO=AHK( tính chất hình chữ nhật )
mà AHK +KHC=90 độ
Góc ACB + KHC cũng bằng 90 độ
nên góc AHK Bằng góc ACB
Nên góc AIK = ACB
Xét tam giác AKI và tam giác ABC có
góc A chung
Góc AIK = ACB (chứng minh trên)
Suy ra Tam giác AKI đồng dạng với tam giác ABC (g.g)
BT 1:
a/ Xét tg ABE và tg ACF có
^BAE=^CAF (AD là phân giác ^BAC)
^AEB=^AFC=90
=> tg ABE đồng dạng với tg ACF => \(\frac{AE}{AF}=\frac{BE}{CF}\) (1)
b/ Xét tg BDE và tg CDF có
^BDE=^CDF (góc đối đỉnh)
^BED=^CFD=90
=> tg BDE đồng dạng với tg CDF => \(\frac{DE}{DF}=\frac{BE}{CF}\) (2)
Từ (1) và (2) => \(\frac{AE}{AF}=\frac{DE}{DF}\Rightarrow AE.DE=AF.DE\)
BT 2:
a/ HI vg AB, AK vg AB => HI//AK ( cùng vg với AB)
cm tương tự cũng có AI//KH (cùng vg với AC)
=> AIHK là hbh (có các cặp cạnh dối // với nhau từng đôi một)
^BAC=90
=> AIHK là hcn
b/
+ Ta có ^ACB=^AHK (cùng phụ với ^HAC) (1)
+ Xét 2 tg vuông IAK và tg vuông HKA có
IA=HK (AIHK là hcn), AK chung => tg IAK = tg HKA (hai tg vuông có các cạnh góc vuông từng đội một băng nhau)
=> ^AIK=^AHK (2)
Từ (1) và (2) => ^AIK=^ACB
a: ΔHBA đồng dạng với ΔABC
ΔHAC đồng dạng với ΔABC
ΔHBA đồng dạng với ΔHAC
b: Xet ΔMAH vuông tại M và ΔABC vuông tại A có
góc MAH=góc B
=>ΔMAH đồng dạng với ΔABC
c: ΔMAH đồng dạngvới ΔABC
=>\(\dfrac{S_{MAH}}{S_{ABC}}=\left(\dfrac{AH}{BC}\right)^2=\left(\dfrac{2}{5}\right)^2=\dfrac{4}{25}\)
=>\(S_{MAH}=\dfrac{4}{25}\cdot20=\dfrac{80}{25}=3.2\left(cm^2\right)\)