Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\)
\(=\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\)
\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
mà \(\frac{a}{b}+\frac{b}{a}\ge2\)(dễ chứng minh)
chứng minh tương tự ta có
\(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\)\(\ge\)6
\(\left(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\right)^2\ge6^2=36\)(2) (a>0; b>0; c>0)
tiếp theo chứng minh
\(36\ge4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(18\ge2\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(18a^2+18b^2+18c^2\ge2ab+2bc+2ca\)
\(16\left(a^2+b^2+c^2\right)+\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(16\left(a^2+b^2+c^2\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (bất đẳng thức luôn đúng )
suy ra bất đẳng thức
\(36\ge4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)luôn đúng (2)
từ (1) và (2) suy ra
\(\left(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\right)^2\ge\text{}\text{36}\ge\)\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Áp dụng BĐT Schwarz ta có:
\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left(2\left(a+b+c\right)\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)
Dấu ''='' xảy ra bạn tự giải nha.
Ta có :
\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\ge\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{\left(ab-1\right)\left(bc-1\right)\left(ac-1\right)}{abc}\ge\frac{\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)}{abc}\)
\(\Leftrightarrow\left(ab-1\right)\left(bc-1\right)\left(ac-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)
\(\Leftrightarrow\left(ab-bc\right)^2+\left(bc-ac\right)^2+\left(ac-ab\right)^2\ge\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(\Leftrightarrow\left(a-c\right)^2\left(b^2-1\right)+\left(b-c\right)^2\left(a^2-1\right)+\left(a-b\right)^2\left(c^2-1\right)\ge0\left(1\right)\)
Do a,b,c là các số thực dương không nhỏ hơn 1 nên (1) đúng .
Dấu đẳng thức xảy ra khi và khỉ khi : \(\hept{\begin{cases}\left(a-c\right)^2\left(b^2-1\right)=0\\\left(b-c\right)^2\left(a^2-1\right)=0\\\left(a-b\right)^2\left(c^2-1\right)=0\end{cases}\Rightarrow a=b=c}\)
Dấu "=" còn xảy ra ở các TH:
a = b = 1, c bất kì .
a = c =1, b bất kì
b = c = 1, a bất kì
( a, b, c ko nhỏ hơn 1 )
Ta có: \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\)
\(=\left(a^2+b^2+c^2\right)+\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+6\)
\(\ge\frac{1}{3}\left(a+b+c\right)^2+\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+6\)
\(\ge\frac{1}{3}\left(a+b+c\right)^2+\frac{1}{3}\left(\frac{9}{a+b+c}\right)^2+6\)
\(=\frac{100}{3}\left(đpcm\right)\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
\(\left(a+b+c\right)\)(\(\frac{1}{a}\)\(+\)\(\frac{1}{b}\)\(+\)\(\frac{1}{c}\))\(=\)\(1+\frac{a}{b}\)\(+\)\(\frac{a}{c}\)\(+1\)\(\frac{b}{c}\)\(+\)\(\frac{b}{a}\)\(+1\)\(+\frac{c}{b}\)\(+\frac{c}{a}\)
\(=\)\(3\)\(+\)(\(\frac{a}{b}\)\(+\frac{b}{a}\))\(+\)\(\frac{c}{b}\)\(+\)\(\frac{b}{c}\))\(+\)(\(\frac{a}{c}\)\(+\)\(\frac{c}{a}\))
\(mà\)\(\frac{a}{b}\)\(+ \)\(\frac{b}{a}\)\(>=2\)\(;\)\(\frac{b}{c}\)\(+\)\(\frac{c}{b}\)\(>=2\)\(;\)\(\frac{a}{c}\)\(+\)\(\frac{c}{a}\)\(>=2\)( cái này bạn tự chứng minh được)
\(=>\)\(\left(a+b+c\right)\)(\(\frac{1}{a}\)\(+\)\(\frac{1}{b}\)\(+\)\(\frac{1}{c}\)) \(>=3+2+2+2\)
\(=>\)\(\left(a+b+c\right)\)(\(\frac{1}{a}\)\(+\)\(\frac{1}{b}\)\(+\)\(\frac{1}{c}\)) \(>=9\)(\(luôn\)\(đúng\)\(với\)\(mọi\)\(a,b,c\)\(dương\))
\(k\)\(cho\)\(mình\)\(nha\)\(các\)\(bạn\), \(mình\)\(k\)\(lại\)\(cho\)\(nhé\)
\(chúc\)\(các\)\(bạn\)\(học\)\(tốt\)
Áp dụng Cachy cho 3 số ra ngay kết quả em nhé!
hoặc cách 2: ÁP dụng BUN cho 3 số
\(\left(\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2+\left(\sqrt{c}\right)^2\right)\left(\frac{1}{\sqrt{a}^2}+\frac{1}{\sqrt{b}^2}+\frac{1}{\sqrt{c}^2}\right)\ge\)
\(\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2=3^2=9\)
(1/a+1/b)(a+b)=a/a+b/a+b/b+a/b=2+a/b+b/a
Áp dụng BDT Cô-si: a/b + b/a \(\ge\)2\(\sqrt{\frac{a}{b}\cdot\frac{b}{a}}\)=2
=> (1/a+1/b)(a+b)\(\ge\)1+1+2=4
\(\Leftrightarrow\left(a+b\right)\left(\frac{a+b}{ab}\right)\ge4\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab}\ge4\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vì bđt cuối luôn đúng mà các phép biến đổi trên là tương đương nên bđt ban đầu luôn đúng
Dầu "=" xảy ra \(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)