K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 8 2021

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)

8 tháng 3 2021

Mk ms tìm được GTNN thôi!

Ta có: A = a3 + b3 = (a + b)(a2 + b2 - ab) = (a + b)(1 - ab)

Áp dụng BĐT Cô-si cho 2 số ko âm a2 và b2 ta có:

a2 + b2 \(\ge\) 2ab

\(\Leftrightarrow\) 1 \(\ge\) 2ab

\(\Leftrightarrow\) 1 - 2ab \(\ge\) 0

\(\Leftrightarrow\) 1 - ab \(\ge\) ab

\(\Rightarrow\) A \(\ge\) ab(a + b)

Dấu "=" xảy ra khi và chỉ khi a = b = \(\sqrt{0,5}\)

\(\Rightarrow\) A \(\ge\) 0,5 . 2\(\sqrt{0,5}\) = \(\sqrt{0,5}\)

Vậy ...

Chúc bn học tốt!

NV
8 tháng 3 2021

\(a^2+b^2=1\Rightarrow\left\{{}\begin{matrix}0\le a\le1\\0\le b\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3\le a^2\\b^3\le b^2\end{matrix}\right.\)

\(\Rightarrow a^3+b^3\le a^2+b^2=1\)

\(A_{max}=1\) khi \(\left(a;b\right)=\left(0;1\right);\left(1;0\right)\)

\(a^3+a^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}a^2\)

\(b^3+b^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}b^2\)

Cộng vế:

\(2\left(a^3+b^3\right)+\dfrac{\sqrt{2}}{2}\ge\dfrac{3}{\sqrt{2}}\left(a^2+b^2\right)=\dfrac{3\sqrt{2}}{2}\)

\(\Rightarrow a^3+b^3\ge\dfrac{\sqrt{2}}{2}\)

\(A_{min}=\dfrac{\sqrt{2}}{2}\) khi \(a=b=\dfrac{\sqrt{2}}{2}\)

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

7 tháng 9 2017

Ko mất tính tổng quát giả sử \(a_1=\text{max}\left\{a_2;a_3;a_4;a_5\right\}\).

Áp dụng BĐT AM-GM ta có:

\(a_1a_2+a_2a_3+a_3a_4+a_4a_5\le a_1\left(a_2+a_3+a_4+a_5\right)\)

\(\le\frac{\left(a_1+a_2+a_3+a_4+a_5\right)^2}{4}=\frac{1}{4}\)

Xảy ra khi có 2 số bằng \(\frac{1}{2}\) và 3 số còn lại bằng 0

22 tháng 5 2022

P≤a2+2aab+2b2+b2+22bc+2c2+c2+22ca+2a2

P≤(a+2b)2+(b+2c)2+(c+2a)2

P≤(1+2)(a+b+c)=1+2

Dấu "=" xảy ra khi (a;b;c)=(0;0;1) và các hoán vị

ấn vào ô báo cáo

25 tháng 2 2022

Tối quá, ko thấy bài đâu 

HT