Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phát biểu “Mọi số tự nhiên n đều chia hết cho 3” là một phát biểu sai (vì 2 là số tự nhiên nhưng 2 không chia hết cho 3). Đây là một mệnh đề.
b) Phát biểu “Tồn tại số tự nhiên n đều chia hết cho 3” là một phát biểu đúng (chẳng số 3 là số tự nhiên và 3 chia hết cho 3). Đây là một mệnh đề.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
Nếu n chẵn
=> n2-1 lẻ
=> không chia hết cho 24 (1)
Nếu n chia hết cho 3
=> n2 chia hết cho 3
=> n2-1 không chia hết cho 3
=> n2-1 không chia hết cho 24 (2)
Từ (1) và (2)
=> đpcm
Ta có: \(a,b\)không chia hết cho \(3\)do đó \(a^2\equiv1\left(mod3\right),b^2\equiv1\left(mod3\right)\).
\(a^2-b^2=\left(a^2-1\right)-\left(b^2-1\right)\).
Ta sẽ chứng minh \(a^2-1⋮24\).
\(24=3.8,\left(3,8\right)=1\)do đó ta sẽ chứng minh \(a^2-1\)chia hết cho \(3\)và \(8\).
- \(a^2-1⋮3\)chứng minh trên.
\(a^2-1=\left(a-1\right)\left(a+1\right)\)là tích của hai số chẵn liên tiếp nên có một thừa số chia hết cho \(2\)(nhưng không chia hết cho \(4\)), một thừa số chia hết cho \(4\)do đó chia hết cho \(2.4=8\).
Tương tự với \(b^2-1\).
Do đó ta có đpcm.