K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

Ta có: 

\(3a-2b⋮11\Rightarrow3a-2b+11\left(2a+3b\right)⋮11\)

\(\Rightarrow25a+31b⋮11\)

Vậy..........................

Chúc bn hok tốt !!! ^-^    

5 tháng 1 2016

51a:17

=> 51a-a+5b:17

=> 50a+5b:17

=> 5(10a+b):17

=> 10a+b:17

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

29 tháng 1 2017

a, Giả sử 10a + b \(⋮\) 17         (1)

Vì 3a + 2b \(⋮\) 17 nên 8(3a + 2b) \(⋮\) 17

=> 24a + 16b \(⋮\) 17                             (2)

Từ (1) và (2) suy ra (10a + b) + (24a + 16b) \(⋮\) 17

=> 10a + b + 24a + 16b \(⋮\) 17

=> (10a + 24a) + (16b + b) \(⋮\) 17

=> 34a + 17b \(⋮\) 17

=> 17(2a + b) \(⋮\) 17

=> Giả sử đúng

Vậy 10a + b \(⋮\)17 (đpcm)

b, Giả sử 10a + b \(⋮\) 17        (1)

Vì a - 5b \(⋮\) 17 nên 7(a - 5b) \(⋮\) 17

=> 7a - 35b \(⋮\) 17                  (2)

Từ (1) và (2) suy ra (10a + b) + (7a - 35b) \(⋮\) 17

=> 10a + b + 7a - 35b \(⋮\) 17

=> (10a + 7a) + (b - 35b) \(⋮\) 17

=> 17a + (-34b) \(⋮\) 17

=> 17.[a + (-2)b] \(⋮\) 17

=> Giả sử đúng

Vậy 10a + b \(⋮\) 17 (đpcm)

22 tháng 11 2021
23456789:123
6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

18 tháng 12 2017

Ta có \(3a+2b⋮17\)

\(\Rightarrow9\left(3a+2b\right)⋮17\)

\(\Leftrightarrow27a+18b⋮17\)

\(\Leftrightarrow17\left(a+b\right)+10a+b⋮17\)

\(\Leftrightarrow10a+b⋮17\left(đpcm\right)\)

18 tháng 12 2015

Ta có: 17a chia hết cho 17

suy ra :17a+3a+b chia hết cho 17

suy ra :20a+2b chia hết cho 17

rút gọn cho 2

suy ra :10a+b a hết cho 17

do 3a+2b⋮⋮17

\Rightarrow⇒8(3a+2b)⋮⋮17

     Ta có 8(3a+2b)+10a+b

=24a+16b+10a+b

=34a+17b

17(2a+b)⋮⋮17

vậy 8(3a+2b)+10a+b  ⋮⋮17

             mà 8(3a+2b)⋮⋮17               (\forall∀a,b\in∈N)

      nên 10a+b⋮⋮17

16 tháng 6 2019

\(2\left(10a+b\right)-\left(3a+2b\right)\)

\(=20a+2b-3a-2b\)

\(=17a\)\(⋮\)\(17\)với \(\forall a\in N\)

Vì \(3a+2b\)\(⋮\)\(17\)với \(\forall a\in N\)

\(\Rightarrow2\left(10a+b\right)\)\(⋮\)\(17\)

\(\Leftrightarrow10a+b\)\(⋮\)\(17\)với \(\forall x\in N\)

11 tháng 4 2023

SOS

11 tháng 4 2023

     3a + 2b ⋮ 11

⇒7(3a + 2b) ⋮ 11

⇒ 21a + 14 b ⋮ 11

⇒ 11a + 10a + 11b + 3b ⋮ 11

⇒ (11a+11b ) + 10a + 3b ⋮ 11

⇒11(a+b) + 10a + 3b ⋮ 11

⇒ 10a + 3b ⋮ 11 (đpcm)

14 tháng 8 2016

Xét hiệu : 10 x (3a + 2b) - 3 x (10a + b) = 30a +20b - 30a - 3b = 17b chia hết cho 17

Mà 3a + 2b chia hết cho 17 => 10 x (3a + 2b) chia hết cho 17  => 3 x (10a + b) cũng chia hết cho 17 

Mặt khác: 3 không chia hết cho 17 => 10a + b chia hết cho 17

Vậy khi 3a + 2b chia hết cho 17 (a , b thuộc N) thì 10a + b chia hết cho 17.

(Bạn cũng có thể xét hiệu 3a + 2b - 2(10a + b) = -17a cũng chia hết cho 17 rồi lập luận tương tự như cách mình trình bày ở trên)

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

11 tháng 2 2016

Ta có: 3a+2b chia hết cho 17

=>9(3a+2b) chia hết cho 17

=>27a+18b chia hết cho 17

=>(27a-17a)+(18b-17b) chia hết cho 17         (do 17a,17b chia hết cho 17)

=>10a+b chia hết cho 17 (đpcm)