K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 3 2022

\(\Leftrightarrow4a^2+2b^2-4ab-10b+22< 0\)

\(\Leftrightarrow\left(2a-b\right)^2+\left(b-5\right)^2< 3\)

\(\Rightarrow\left(b-5\right)^2< 3\Rightarrow\left[{}\begin{matrix}\left(b-5\right)^2=0\\\left(b-5\right)^2=1\end{matrix}\right.\)

\(\Rightarrow b=\left\{4;5;6\right\}\)

- Với \(b=4\Rightarrow\left(2a-4\right)^2< 2\Rightarrow\left(a-2\right)^2< \dfrac{1}{2}\Rightarrow\left(a-2\right)^2=0\)

\(\Rightarrow a=2\)

- Với \(b=5\Rightarrow\left(2a-5\right)^2< 3\Rightarrow\left(2a-5\right)^2=1\Rightarrow\left[{}\begin{matrix}a=2\\a=3\end{matrix}\right.\) (do 2a-5 luôn lẻ)

- Với \(b=6\Rightarrow\left(2a-6\right)^2< 2\Rightarrow\left(a-3\right)^2< \dfrac{1}{2}\Rightarrow\left(a-3\right)^2=0\)

\(\Rightarrow a=3\)

12 tháng 8 2021

Đừng dùng đạo hàm hay gì nhá

NV
8 tháng 3 2021

\(\lim\dfrac{1+a+...+a^n}{1+b+...+b^n}=\lim\dfrac{\dfrac{1-a^n}{1-a}}{\dfrac{1-b^n}{1-b}}=\lim\dfrac{\left(1-a^n\right)\left(1-b\right)}{\left(1-b^n\right)\left(1-a\right)}=\dfrac{1-b}{1-a}\)

\(\Rightarrow\dfrac{1-b}{1-a}=\dfrac{2}{3}\Leftrightarrow3-3b=2-2a\)

\(\Leftrightarrow2a-3b=-1\)

NV
3 tháng 4 2021

Bài này đặt ở khu vực lớp 12 mình còn giải (vì có thể sử dụng tọa độ hóa cực lẹ)

Còn lớp 11 thì dựng hình được, nhưng việc tính toán số liệu sau đó đúng là thảm họa.

3 tháng 4 2021

undefined

NV
15 tháng 1 2021

Nếu \(a\ne0\Rightarrow\lim\dfrac{an^3+bn^2+2n+4}{n^2+1}=\lim\dfrac{an+b+\dfrac{2}{n}+\dfrac{4}{n^2}}{1+\dfrac{1}{n}}=\infty\) ko thỏa mãn

\(\Rightarrow a=0\)

Khi đó: \(\lim\dfrac{bn^2+2n+4}{n^2+1}=\lim\dfrac{b+\dfrac{2}{n}+\dfrac{4}{n^2}}{1+\dfrac{1}{n^2}}=b\Rightarrow b=1\)

\(\Rightarrow2a+b=1\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\)

Ta có: \({\sin ^2}a + {\cos ^2}a  = 1\)

 \(\Leftrightarrow \frac{1}{9} + {\cos ^2}a  = 1\)

\(\Leftrightarrow {\cos ^2}a =  1 - \frac{1}{9}= \frac{8}{9}\)

\(\Leftrightarrow \cos a  =\pm\sqrt { \frac{8}{9}}  =  \pm \frac{{2\sqrt 2 }}{3}\)

Vì \(\cos a < 0\) nên \(cos a =-\frac{{2\sqrt 2 }}{3}\)

Suy ra \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{{\frac{1}{3}}}{{ - \frac{{2\sqrt 2 }}{3}}} =  - \frac{{\sqrt 2 }}{4}\)

Ta có: \(\sin 2a = 2\sin a\cos a = 2.\frac{1}{3}.\left( { - \frac{{2\sqrt 2 }}{3}} \right) =  - \frac{{4\sqrt 2 }}{9}\)

\(\cos 2a = 1 - 2{\sin ^2}a = 1 - \frac{2}{9} = \frac{7}{9}\)

\(\tan 2a = \frac{{2\tan a}}{{1 - {{\tan }^2}a}} = \frac{{2.\left( { - \frac{{\sqrt 2 }}{4}} \right)}}{{1 - {{\left( { - \frac{{\sqrt 2 }}{4}} \right)}^2}}} =  - \frac{{4\sqrt 2 }}{7}\)

b) Vì \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\) nên \(\sin a > 0,\cos a < 0\)

\({\left( {\sin a + \cos a} \right)^2} = {\sin ^2}a + {\cos ^2}a + 2\sin a\cos a = 1 + 2\sin a\cos a = \frac{1}{4}\)

Suy ra \(\sin 2a = 2\sin a\cos a = \frac{1}{4} - 1 =  - \frac{3}{4}\)

Ta có: \({\sin ^2}a + {\cos ^2}a = 1\;\)

\( \Leftrightarrow \left( {\frac{1}{2} - {\cos }a} \right)^2 + {\cos ^2}a - 1 = 0\)

\( \Leftrightarrow \frac{1}{4} - \cos a + {\cos ^2}a + {\cos ^2}a - 1 = 0\)

\( \Leftrightarrow 2{\cos ^2}a - \cos a - \frac{3}{4} = 0\)

\( \Rightarrow \cos a = \frac{{1 - \sqrt 7 }}{4}\) (Vì \(\cos a < 0)\)

\(\cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\frac{{1 - \sqrt 7 }}{4}} \right)^2} - 1 =  - \frac{{\sqrt 7 }}{4}\)

\(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \frac{{ - \frac{3}{4}}}{{ - \frac{{\sqrt 7 }}{4}}} = \frac{{3\sqrt 7 }}{7}\)

Tham khảo nhé :

Cho a b 0 và 3a + 5b = 12,Tìm GTLN của P = ab,Cho a b c 0 và abc = 1,Chứng minh (a + 1)(b + 1)(c + 1) = 8,Q = a^2 + b^2 + c^2,Toán học Lớp 8,bà i tập Toán học Lớp 8,giải bà i tập Toán học Lớp 8,Toán học,Lớp 8

28 tháng 7 2019

ê P ở đâu mà bảo người ta tham khảo?

5 tháng 1 2021

3: Ta có \(\dfrac{1}{u_{n+1}}=\dfrac{1}{u_n}-1\).

Do đó \(\dfrac{1}{u_{100}}=\dfrac{1}{u_{99}}-1=\dfrac{1}{u_{98}}-2=...=\dfrac{1}{u_1}-99=\dfrac{1}{-2}-99=\dfrac{-199}{2}\Rightarrow u_{100}=\dfrac{-2}{199}\).