K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 12 2021

Đề có vấn đề. Bạn coi lại.

2 tháng 2 2021

Áp dụng Cô-si, ta được: \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=\left(a^2+\frac{b^2}{4}\right)+\left(a^2+\frac{1}{a^2}\right)\ge\left|ab\right|+2\Rightarrow\left|ab\right|\le2\)hay \(-2\le ab\le2\)(/*)

\(\Rightarrow S=ab+2009\ge2007\)

Đẳng thức xảy ra khi a = -1; b = 2 hoặc a = 1; b = -2

* Chú ý: Với đánh giá (/*) thì ta còn tìm được GTLN của S = 2011 khi a = 1; b = 2 hoặc a = 2; b = 1 hoặc a = -1; b = -2 hoặc a = -2; b = -1

26 tháng 9 2017

\("a+b"^2\ge4ab=4\Rightarrow a+b\ge2\)

\(a^2+b^2\ge\frac{"a+b"^2}{2}\)

Nên A \(\ge\frac{3"a+b"^2}{2}+\frac{4}{a+b}=\frac{"a+b"^2}{2}+\frac{4}{a+b}+\frac{4}{a+b}-\frac{4}{a+b}+"a+b"^2\ge6-2+4=8\)

Nên Min \(A=8\)khi \(a=b=1\)

P/s: Thay dấu Ngođặc Kép thành Ngoặc Đơn nhé

26 tháng 9 2017

Mình thấy thay a=b=1 vào ko đc 8 mak đc 4

DD
25 tháng 8 2021

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}\ge\frac{0-1}{2}=-\frac{1}{2}\)

Dấu \(=\)khi \(\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2=1\end{cases}}\), chẳng hạn \(c=0,a=-b=\sqrt{\frac{1}{2}}\)

25 tháng 8 2021

Ta có : \(1\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1+2\left(ab+bc+ca\right)}{3}\)

\(< =>ab+bc+ca\le1\)

Dấu "=" tự tìm nhaaaaa

23 tháng 1 2021

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

NV
23 tháng 1 2021

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

24 tháng 8 2020

Ta chứng minh:\(\sqrt{a+bc}\ge a+\sqrt{bc}\)

\(\Leftrightarrow a+bc\ge a^2+bc+2a\sqrt{bc}\)

\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)\(\Leftrightarrow a\ge a\left(a+2\sqrt{bc}\right)\Leftrightarrow1\ge a+2\sqrt{bc}\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)

\(\Leftrightarrow b+c-2\sqrt{bc}\ge0\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)(luôn đúng)

\(\Leftrightarrow\sqrt{a+bc}\ge a+\sqrt{bc}\)

CMTT\(\sqrt{b+ca}\ge b+\sqrt{ca}\)

          \(\sqrt{c+ab}\ge c+\sqrt{ab}\)

\(\Leftrightarrow\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)Vậy ......

(Dấu = xảy ra (=) a=b=c=1/3

8 tháng 8 2015

Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)

Với a, b > 0, ta có: 

\(a^2+b^2\ge2ab\)

\(\left(a+b\right)^2\ge4ab\)

\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.

Phân phối số hạng hợp lí để áp dụng Côsi

\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)

\(\ge6\)

Dấu "=" xảy ra khi a = b = 1/2.

\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)

\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)

\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)