K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

chả lời câu này

9 tháng 4 2018

 Bài này theo mình nên chọn phương án phân tích ĐTTNT từ điều kiện đầu tiên! 
2a² + 2b² = 5ab 
<=> 2a² - 5ab + 2b² = 0 
<=> 2a² - 4ab - ab + 2b² = 0 
<=> 2a(a - 2b) - b(a - 2b) = 0 
<=> (a - 2b)(2a - b) = 0 
<=> [a = 2b 
.......[ a = b/2 (Loại vì a > b) 
Thay a = 2b vào biểu thức ta có: 
. .2b + b . . .. 3b 
------------ = ---------- = 3 
. .2b - b . . . . b 

21 tháng 3 2016

từ giả thiết chuyển vế phân tích thành nhân tử ta đc (a-b)(2a-b)=0=>a=2b(do a>b>0)=.P=1

12 tháng 11 2016

Từ \(2\left(a^2+b^2\right)=5ab\)\(\Rightarrow2a^2+2b^2-5ab=0\)

\(\Rightarrow2b^2-ab-4ab+2a^2=0\)

\(\Rightarrow b\left(2b-a\right)-2a\left(2b-a\right)=0\)

\(\Rightarrow\left(b-2a\right)\left(2b-a\right)=0\)

\(\Rightarrow\orbr{\begin{cases}b-2a=0\\2b-a=0\end{cases}}\Rightarrow\orbr{\begin{cases}b=2a\\a=2b\end{cases}}\Rightarrow\orbr{\begin{cases}a=\frac{b}{2}\\b=\frac{a}{2}\end{cases}}\)

  • Với \(b=2a\Rightarrow P=\frac{3a-b}{2a+b}=\frac{\frac{3b}{2}-b}{\frac{2b}{2}+b}=\frac{\frac{3b}{2}-\frac{2b}{2}}{\frac{2b}{2}+\frac{2b}{2}}=\frac{\frac{b}{2}}{\frac{4b}{2}}=\frac{1}{4}\)
  • Với \(b=2a\Rightarrow P=\frac{3a-b}{2a+b}=\frac{3a-\frac{a}{2}}{2a+\frac{a}{2}}=\frac{\frac{6a}{2}-\frac{a}{2}}{\frac{4a}{2}+\frac{a}{2}}=\frac{\frac{5a}{2}}{\frac{5a}{2}}=1\)
4 tháng 3 2017

Giá trị của biểu thức P là \(1\)

29 tháng 12 2017

Sửa lại đề bài:  1 / 2a- b 

                   ( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)

mới lm đc nhé bn! 

a) ĐKXĐ: bn tự lm nhé ! 

bn biến đổi: 2a3-b+2a-a2b =  (2a-b)  + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1) 

rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0

29 tháng 12 2017

Bạn nào giúp tớ với!

23 tháng 2 2015

Ta có : 2(a2 +b2) = 5ab <=> 2a2 - 5ab + 2b2 = 0 <=> 2a2 - 4ab - ab + 2b2 =0 <=> 2a(a - 2b) - b(a - 2b) =0

<=> (2a - b)(a - 2b) = 0 <=> a = 2b hay b = 2a

Vì a > b > 0 nên chỉ xảy ra trường hợp a = 2b. Do đó \(P=\frac{3.2b-b}{2.2b+b}=\frac{5b}{5b}=1\)

 

Ta có:

\(4a^2+b^2=5ab\Leftrightarrow4a^2+b^2-4ab-ab=0\)

\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\4a-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b\left(ktm\right)\\4a=b\left(tm\right)\end{matrix}\right.\)

\(\Rightarrow4a=b\)

\(\Rightarrow\dfrac{5ab}{3a^2+2b^2}=\dfrac{5a.4a}{3a^2+2.\left(4a\right)^2}=\dfrac{20a^2}{3a^2+32a^2}\)

\(=\dfrac{20a^2}{35a^2}=\dfrac{4}{7}\)

26 tháng 9 2021

\(4a^2+b^2=5ab\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

\(\Rightarrow b=4a\left(do.a\ne b\right)\)

\(\dfrac{5ab}{3a^2+2b^2}=\dfrac{20a^2}{3a^2+32a^2}=\dfrac{4}{7}\)