K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NH
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PQ
0
NV
0
1 tháng 6 2019
\(2a\)\(:\)\(x+y=2\)
\(\Rightarrow x^2+2xy+y^2=4\)
\(\Rightarrow x^2+y^2=4-2xy\)
\(\Rightarrow4-2xy\)nhỏ nhất
\(\Rightarrow xy\)lớn nhất
Mà x + y = 2 \(\Rightarrow\)x , y không thể là 2 số âm
vì ta cần xy lớn nhất nên x , y không thể khác dấu
\(\Rightarrow\)ta chỉ còn trường hợp x , y đều dương và x + y = 2
\(\Rightarrow xy\)lớn nhất khi và chỉ khi x = 2 ; y= 0 và x = 0 ; y = 2
không chắc nữa
T
20 tháng 9 2019
Bài 1:
\(A=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)
Đẳng thức xảy ra khi a =b=c=1/3
Bài 2:Buồn ngủ rồi, chắc để đó cho anh Lâm.
NV
Nguyễn Việt Lâm
Giáo viên
20 tháng 9 2019
Câu 2 có cho a; b dương ko? Nếu cho dương thì đỡ phải xét thêm 1 trường hợp, còn ko cho gì thì xét 2 trường hợp hơi dài
a,b có thể bằng:
2;0 hoặc 1;1
Cứ như vậy thay số vào
a) Áp dụng Bđt Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2=2^2=4\)
\(\Rightarrow2\left(a^2+b^2\right)\ge4\)
\(\Rightarrow A\ge2\)
Dấu = khi a=b=1
Vậy...
b,c tương tự nhé