Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
=>BA/BC=BH/BA
=>BA^2=BH*BC
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: Xét ΔCAM có
CK,AH là đường cao
CK cắt AH tại I
=>I là trực tâm
=>MI vuông góc AC
=>MI//AB
Xét ΔHAB có
M là trung điểm của HB
MI//AB
=>I là trung điểm của HA
a) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH∼ΔCBA(g-g)
⇒\(\dfrac{AB}{CB}=\dfrac{BH}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BH\cdot BC\)(đpcm)
a, Xét ▲ABC và ▲MDC có:
∠CAB=∠DMC (=90o)
∠DCB chung
=> ▲ABC∼▲MDC (g.g)
b, Xét ▲MBI và ▲ABC có:
∠CAB=∠IMB (=90o)
∠ABC chung
=> ▲MBI∼▲ABC (g.g)
=> \(\dfrac{BI}{BC}=\dfrac{BM}{BA}\) => BI.BA=BM.BC
c, Xét ▲ADB và ▲KIB có:
∠DAB=∠CKB (=90o)
∠DBA chung
=> ▲ADB∼▲KIB (g.g)
=>\(\dfrac{BA}{KB}=\dfrac{DB}{BI}\) => BA.BI=KB.DB
Xét ▲DKC và ▲IAC có:
∠DKC=∠IAC (=90o)
∠DCK chung
=> ▲DKC∼▲IAC (g.g)
=>\(\dfrac{CK}{AC}=\dfrac{DC}{CI}\) => CK.CI=DC.AC
Ta có: BA.BI=KB.DB nên BA.BI ko thay đổi khi M thay đổi
CK.CI=DC.AC nên CK.CI ko thay đổi khi M thay đổi
nên BI.BA+CI.CK ko phụ thuộc vào vị trí của điểm M
d, Xét ▲BMA và ▲BIC có:
\(\dfrac{BA}{BM}=\dfrac{BC}{BI}\) (cmc, b)
∠ACB chung
=> ▲BMA ∼▲BIC (c.g.c)
=> ∠BAM=∠BCI
Xét ▲CAI và ▲BKI có:
∠CAI=∠BKI (=90o)
∠AIC=∠KIB (đ.đ)
=> ▲CAI ∼▲BKI (g.g)
=> \(\dfrac{IA}{IC}=\dfrac{IK}{IB}\)
Xét ▲IAK và ▲ICB có:
\(\dfrac{IA}{IC}=\dfrac{IK}{IB}\) (cmt)
∠AIK=∠CIB (đ.đ)
=> ▲IAK ∼▲ICB (g.g)
=> ∠KAB=∠BCI
mà ∠BAM=∠BCI
nên ∠KAB=∠BAM hay AB là tia p/g của ∠MAK (đpcm)
a: \(CB=\sqrt{9^2+12^2}=15\left(cm\right)\)
ADlà phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=15/7
=>BD=45/7cm; CD=60/7cm
b: Xét ΔABH vuông tại H và ΔCDE vuông tại E có
góc HAB=góc ECD
=>ΔABH đồng dạng với ΔCDE
a) Xét ΔABC vuông tại A và ΔMDC vuông tại M có
\(\widehat{MCD}\) chung
Do đó: ΔABC\(\sim\)ΔMDC(g-g)
b) Xét ΔBMI vuông tại M và ΔBAC vuông tại A có
\(\widehat{ABC}\) chung
Do đó: ΔBMI\(\sim\)ΔBAC(g-g)
Suy ra: \(\dfrac{BM}{BA}=\dfrac{BI}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BM\cdot BC=BA\cdot BI\)(đpcm)