Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}=2\left(cm\right)\)
\(a,\) Vì E,D là trung điểm AB,AC nên ED là đường trung bình tam giác ABC
Do đó \(ED//BC;ED=\dfrac{1}{2}BC(1)\)
Vì H,K là trung điểm GB,GC nên HK là đường trung bình tam giác BGC
Do đó \(HK//BC;HK=\dfrac{1}{2}BC(2)\)
Từ \((1)(2)\Rightarrow HK//ED;HK=ED\)
Vậy DEHK là hình bình hành
\(b,\Delta ABC\) cân tại A nên \(AB=AC\Rightarrow \dfrac{1}{2}AB=\dfrac{1}{2}AC\)
\(\Rightarrow AE=EB=AD=DC\)
Ta có \(AB=AC;AE=AD;\widehat{BAC}\) chung
\(\Rightarrow \Delta ADB=\Delta AEC(c.g.c)\\ \Rightarrow BD=EC\)
Lại có G là trọng tâm tam giác ABC nên \(CK=KG=GE=\dfrac{1}{3}CE\)
\(BH=HG=GD=\dfrac{1}{3}BD\)
Do đó \(KG+GE=HG+GD(\dfrac{2}{3}BD=\dfrac{2}{3}CE)\)
\(\Rightarrow EK=HD\)
Vậy DEHK là hình chữ nhật
1: Xét ΔBCA có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔBCA
Suy ra: \(ED=\dfrac{BC}{2}=2\left(cm\right)\)
Tam giác ABC có hai đường trung tuyến BD và CE cắt nhau tại G nên G là trọng tâm tam giác ABC.
Ta có: GD = 1/2 GB (tính chất đường trung tuyến của tam giác)
GH = 1/2 GB (gt)
Suy ra: GD = GH
GE = 1/2 GC (tính chất đường trung tuyến của tam giác)
GK = 1/2 GC
Suy ra GE = GK
Tứ giác DEHK là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).
Mình không biết vẽ hình trên đây nên bạn thông cảm nhé
a,Xét tam giác GBC có: GI=BI(I là trung điểm của GB)
GK=CK(K là trung điểm của GC)
=>IK là đường trung bình của tam giác GBC
b, Vì IK là đường trung bình của tam giác GBC
=> \(\hept{\begin{cases}IK=\frac{1}{2}BC\\IKsongsongBC\end{cases}}\)(1)
Vì BD là đường trung tuyến kẻ từ B của tam giác ABC =>AD=CD
Vì CE là đường trung tuyến kẻ từ C của tam giác ABC =>AE=BE
Xét tam giác ABC có: AD=CD
AE=BE
=>DE là đường trung bình của tam giác ABC
=>\(\hept{\begin{cases}DE=\frac{1}{2}BC\\DEsongsongBC\end{cases}}\)(2)
Từ (1) và (2)=>\(\hept{\begin{cases}IK=ED\\IKsongsongED\end{cases}}\)
a) xét tg BGC có : BI=IG (gt) ; GK=KC (gt) => IK// BC => IK là đtb tg BGC
chỉ có thể giải v thui thông cảm nha
a) Xét tam giác GBC có:
I là trung điểm GB, K là trung điểm GC => IK là đường trung bình tam giác GBC(đpcm)
b) Xét tam giác ABC có:
BD là trung tuyến => D là trung điểm AC
CE là trung tuyến =>E là trung điểm AB
==>> ED là đường trung bình tam giác ABC => ED= 1/2 BC (1) và ED//BC(2)
Ta có: IK là đường trung bình tam giác GBC => IK= 1/2 BC (3) và IK//BC (4)
Từ (1) và (3) => ED=IK (đpcm)
Từ (2) và (4) => ED//IK (đpcm)
K cho mk nha!!!!!
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC