Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình
a) Vì Δ ABC cân (gt) => AB = AC (Đ/lý)
<ABC = <ACB (Đ/LÝ)
=> Δ ABD = Δ ACE (c-g-c)
=> <BAD = <CAE (góc tương ứng)
=> Δ ABH = Δ ACE (ch-gn)
=> BH = CK (cạnh t/ứng)
mình thấy đề nó sai sai
Cho tam giác ABC cân tại A ( ), trên cạnh BC lấy 2 điểm D và E sao cho BD = DE = EC. Kẻ ; , BH cắt CK tại G. a) Chứng minh tam giác ADE cân b) Chứng minh BH = CK c) Gọi M là trung điểm của BC, chứng minh A, M, G thẳng hàng d) Chứng minh AC > AD
kẻ BH với CK như nào cũng được hay BH⊥AC;CK⊥AB hay H là trung điểm của AC,K là trung điểm của AB
a: Xét ΔADB và ΔAEC có
AB=AC
góc ABD=góc ACE
BD=CE
Do đó: ΔADB=ΔAEC
Suy ra: AD=AE
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc BAH=góc CAK
Do đó: ΔABH=ΔACK
Suy ra: BH=CK
c: Ta có góc GCB+góc ACB=góc GCA
góc GBC+góc ABC=góc GBA
mà góc GCA=góc GBA
và góc ACB=góc ABC
nên góc GBC=góc GCB
=>ΔGBC cân tại G
=>GB=GC
hay G nằm trên đường trung trực của BC(1)
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,G thẳng hàng
Phần a:
Vì Δ ABC cân ở A
=> ^ABC = ^ACB
và AB = AC mà
^ABD + ^ABC = 180° (kề bù)
và ^ACE + ^ACB =180° (kề bù )
=> ^ABD = ^ACE
Xét ΔABD và ΔACE có:
AB = AC (cmt)
^ABD = ^ACE(cmt)
BD = CE (gt)
=>ΔABD = ΔACE (c.g.c)
=> AD = AE hay ΔADE cân ở A
=> đcpcm