Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/
\(\overrightarrow{BC}=\left(3;1\right)\Rightarrow BC=\sqrt{3^2+1^2}=\sqrt{10}\)
H là giao điểm AH và BC nên tọa độ H là nghiệm:
\(\left\{{}\begin{matrix}x-3y-6=0\\3x+y-8=0\end{matrix}\right.\) \(\Rightarrow H\left(3;-1\right)\)
\(\Rightarrow\overrightarrow{AH}=\left(\frac{3}{4};\frac{9}{4}\right)\Rightarrow AH=\sqrt{\left(\frac{3}{4}\right)^2+\left(\frac{9}{4}\right)^2}=\frac{3\sqrt{10}}{4}\)
\(S_{ABC}=\frac{1}{2}AH.BC=\frac{15}{4}\)
Ủa làm tới đây mới để ý H trùng B :D
Từ đề bài, AB có 1 vtpt là \(\left(3;1\right)\) ; BC có 1 vtpt là \(\left(1;-3\right)\)
Mà \(3.1+1.\left(-3\right)=0\Rightarrow AB\perp BC\Rightarrow\Delta ABC\) vuông tại B
\(\Rightarrow\widehat{B}=90^0\)
(Đồng thời AH trùng AB là đúng rồi)
Đường thẳng AC có 1 vtcp là \(\left(3;-1\right)\) và đi qua điểm \(\left(3;1\right)\) nên có pt tổng quát:
\(1\left(x-3\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-6=0\)
Điểm A là giao của AB và AC nên tọa độ thỏa mãn:
\(t+3\left(8-3t\right)-6=0\Rightarrow t=\frac{9}{4}\Rightarrow A\left(\frac{9}{4};\frac{5}{4}\right)\)
B là giao AB và BC nên tọa độ thỏa mãn:
\(t-3\left(8-3t\right)-6=0\) \(\Rightarrow t=3\Rightarrow B\left(3;-1\right)\)
C là giao AC và BC nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}x-3y-6=0\\x+3y-6=0\end{matrix}\right.\) \(\Rightarrow C\left(6;0\right)\)
Đường thẳng AH vuông góc BC nên nhận \(\left(3;1\right)\) là 1 vtpt
Phương trình AH:
\(3\left(x-\frac{9}{4}\right)+1\left(y-\frac{5}{4}\right)=0\Leftrightarrow3x+y-8=0\)
H là trực tâm của tam giác nhỉ.
A có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}2x-y+2=0\\x-2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\Rightarrow A\left(-1;0\right)\)
B có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}2x-y+2=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Rightarrow B\left(0;2\right)\)
H có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}x-2y+1=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow H\left(0;\dfrac{1}{2}\right)\)
Phương trình đường thẳng AC: \(y=0\)
Phương trình đường thẳng CH: \(x+2y-1=0\)
C có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}y=0\\x+2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\Rightarrow H\left(1;0\right)\)
a: vecto AB=(1;-1)
=>VTPT là (1;1)
Phương trình AB là:
1(x-0)+1(y-3)=0
=>x+y-3=0
vecto AC=(-3;2)
=>VTPT là (2;3)
Phương trình AC là:
2(x-0)+3(y-3)=0
=>2x+3y-9=0
vecto BC=(-4;3)
=>VTPT là (3;4)
Phương trình BC là;
3(x-1)+4(y-2)=0
=>3x-3+4y-8=0
=>3x+4y-11=0
vecto BC=(-4;3)
=>AH có VTPT là (-4;3)
Phương trình AH là;
-4(x-0)+3(y-3)=0
=>-4x+3y-9=0
b: vecto AC=(-3;2)
=>BK có VTPT là (-3;2)
Phương trình BK là:
-3(x-1)+2(y-2)=0
=>-3x+3+2y-4=0
=>-3x+2y-1=0
Tọa độ K là:
-3x+2y-1=0 và -4x+3y-9=0
=>K(15;23)
d: vecto AB=(1;-1)
=>Đường trung trực của AB có VTPT là (1;-1)
Tọa độ N là trung điểm của AB là:
x=(0+1)/2=1/2 và y=(2+3)/2=2,5
Phương trình đường trung trực của AB là:
1(x-0,5)+(-1)(y-2,5)=0
=>x-y+2=0
Bạn ghi lại phương trình AB đi bạn