Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Theo câu b, ta được: H là tâm đường tròn ngoại tiếp ngũ giác DEKFO
OH vuông góc MN
=>MN là đường kính của (H)
=>HM=HN
a: góc BFC=góc BEC=1/2*180=90 độ
Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC
góc AFH+góc AEH=180 độ
=>AEHF là tứ giác nội tiếp
b: Xét ΔAFH vuông tại F và ΔADB vuông tại D có
góc FAH chung
=>ΔAFH đồng dạng với ΔADB
=>AF/AD=AH/AB
=>AF*AB=AD*AH
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a: góc BEC=1/2*180=90 độ
=>CE vuông góc AB
góc BFC=1/2*180=90 độ
=>BF vuông góc AC
góc BEC=góc BFC=90 độ
=>BEFC nội tiếp
góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: Xét ΔAEC vuông tại E và ΔAFB vuông tại F có
góc A chung
=>ΔAEC đồng dạng với ΔAFB
=>AE/AF=AC/AB
=>AE*AB=AF*AC
c: góc BHC=góc BOC
góc BHC+góc BAC=180 độ
=>góc BOC+góc BAC=180 độ
=>góc BAC=60 độ
=>góc KOC=60 độ
=>OK/OC=1/2