Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABN và tam giác ACM:
+ AB = AC (gt).
+ \(\widehat{A}\) chung
+ AM = AN (gt).
\(\Rightarrow\) Tam giác ABN = Tam giác ACM (c - g - c).
\(\Rightarrow\) BN = CM (2 cạnh tương ứng).
b) Ta có: AB = AM + MB; AC = AN + NC.
Mà AB = AC (gt); AM = AN (gt).
\(\Rightarrow\) MB = NC.
Ta có: \(\widehat{BMI}+\widehat{AMI}=180^{o}.\)
\(\widehat{CNI}+\widehat{ANI}=180^{o}.\)
Mà \(\widehat{AMI}=\widehat{ANI}\) (Tam giác ABN = Tam giác ACM).
\(\Rightarrow\) \(\widehat{BMI}=\widehat{CNI}.\)
Xét tam giác BIM và tam giác CIN:
+ \(\widehat{BMI}=\widehat{CNI}(cmt).\)
+ \(\widehat{MBI}=\widehat{NCI}\) (Tam giác ABN = Tam giác ACM).
+ MB = NC (cmt).
\(\Rightarrow\) Tam giác BIM = Tam giác CIN (g - c - g).
c) Xét tam giác BAI và tam giác CAI có:
+ AI chung.
+ AB = AC (gt).
+ BI = CI (Tam giác BIM = Tam giác CIN)
\(\Rightarrow\) Tam giác BAI = Tam giác CAI (c - c - c).
\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng).
\(\Rightarrow\) AI là phân giác \(\widehat{BAC}.\)
d) Xét tam giác AMN có: AM = AN (gt).
\(\Rightarrow\) Tam giác AMN cân tại A.
\(\Rightarrow\) \(\widehat{AMN}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (1)
Xét tam giác ABC có: AB = AC (gt).
\(\Rightarrow\) Tam giác ABC cân tại A.
\(\Rightarrow\) \(\widehat{ABC}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (2)
Từ (1); (2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}.\Rightarrow\) \(MN\) // \(BC.\)
a) Xét tam giác ABC có: AB = AC (gt).
\(\Rightarrow\) Tam giác ABC cân tại A.
\(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\Rightarrow\widehat{ABI}=\widehat{ACI.}\)
Xét tam giác ABC cân tại A có: AI là trung tuyến (I là trung điểm BC).
\(\Rightarrow\) AI là tia phân giác của \(\widehat{BAC}\) (Tính chất các đường trong tam giác cân).
b) Ta có: MI = BM + BI; NI = CN + CI.
Mà BM = Cn (gt); BI = CI (I là trung điểm BC).
\(\Rightarrow\) MI = NI.
Xét tam giác ABC cân tại A có: AI là trung tuyến (I là trung điểm BC).
\(\Rightarrow\) AI là đường cao (Tính chất các đường trong tam giác cân).
\(\Rightarrow\) \(AI\perp BC\Rightarrow\widehat{AIM}=\widehat{AIN}=90^o.\)
Xét tam giác AIM và tam giác AIN có:
AI chung.
\(\widehat{AIM}=\widehat{AIN}\left(cmt\right).\)
MI = NI (cmt).
\(\Rightarrow\) Tam giác AIM = Tam giác AIN (c - g - c).
\(\Rightarrow\) AM = AN (2 cạnh tương ứng).
a: xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
Ta có: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường phân giác
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là tia phân giác
1: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
1: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
a) Vì AC=AB => ∆ABC cân=> B=C
Xét ∆BNC và ∆CMB ta có:
BM=CN
B=C
BC cạnh chung
=>∆BNC = ∆CMB(c-g-c)
=> BN=CM
b) Vì I là trung điểm của BC => BI=CI
Xét ∆ABI và ∆ACI ta có:
BI=CI
B=C
AC=AB
=> ∆ABI = ∆ACI (c-g-c)
c) Vì ∆ABI = ∆ACI (chứng minh trên)=> A1=A2=> AI là trung điểm của góc A
HT
a) Vì AC=AB => ∆ABC cân=> B=C
Xét ∆BNC và ∆CMB ta có:
BM=CN
B=C
BC cạnh chung
=>∆BNC = ∆CMB(c-g-c)
=> BN=CM
b) Vì I là trung điểm của BC => BI=CI
Xét ∆ABI và ∆ACI ta có:
BI=CI
B=C
AC=AB
=> ∆ABI = ∆ACI (c-g-c)
c) Vì ∆ABI = ∆ACI (chứng minh trên)=> A1=A2=> AI là trung điểm của góc A
HT