Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\) là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì
\(MI=KN=\frac{DE}{2}\left(1\right)\)
\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)
\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)
\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a/
Xét tg BCD và tg CBD có
BD=CE (gt)
\(\widehat{ABC}=\widehat{ACB}\) (góc ở đáy tg cân ABC)
BC chung
=> tg BCD = tg CBD (c.g.c) => CD=BE (đpcm)
b/
tg BCD = tg CBD (cmt) \(\Rightarrow\widehat{IBC}=\widehat{ICB}\)
=> tg IBC cân tại I => IB=IC
Xét tg ABI và tg ACI có
IB=IC (cmt)
AI chung
AB=AC (cạnh bên tg cân ABC)
=> tg ABI = tg ACI (c.c.c) \(\Rightarrow\widehat{BAI}=\widehat{CAI}\)
=> AI là phân giác \(\widehat{A}\)
=> AI là trung trực của BC (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường trung trực)
c/
Ta có
AD=AB-BD
AE=AC-CE
Mà AB=AC; BD=CE
=> AD=AE
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\) => DE//BC (Talet đảo trong tam giác)
d/
Từ E đựng đường thẳng // với AB cắt BC tại G
ta có
\(\widehat{EGC}=\widehat{ABC}\) (góc đồng vị)
Mà \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{EGC}=\widehat{ACB}\) => tg EGC cân tại E => GE=CE (cạnh bên tg cân)
Mà BD=CE (gt)
=> GE=BD mà BD=BF => GE=BF
Ta có
GE//AB => GE//BF
=> BEGF là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hình bình hành)
=> KE=KF (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> K là trung điểm của EF
e) Chứng minh HI, ST, KF đồng quy.
Gọi O là giao điểm của EI và HK.
Xét tứ giác HIKE ta có:
góc IHE = 900 (HI _|_ EB tại H)
góc IKE = 900 (KI _|_ EC tại K)
góc HEK = 900 (tứ giác ABEC là hình chữ nhật)
=> tứ giác HIKE là hình chữ nhật (tứ giác có 3 góc vuông)
=> góc HIK = 900
=> KI _|_ HI tại I
Xét hình chữ nhật HIKE ta có:
2 đường chéo EI và HK cắt nhau tại O (cách vẽ)
=> O là trung điểm của EI và O là trung điểm của HK
Xét tam giác FEI vuông tại F ta có:
FO là đường trung tuyến ứng với cạnh huyền EI (O là trung điểm của EI)
=> FO = 1/2 EI
Mà EI = HK (tứ giác HIKE là hình chữ nhật)
Nên FO = 1/2 Hk
Xét tam giác FHK ta có:
FO là đường trung tuyến (O là trung điểm của HK)
FO = 1/2 HK (cmt)
=> tam giác FHK vuông tại F
=> HF _|_ FK tại F
Xét tam giác SHK ta có:
ST là đường cao (ST _|_ HK tại T)
HI là đường cao (HI _|_ KI tại I)
KF là đường cao (KF _|_ HF tại F)
=> HI, ST, KF đồng quy tại một điểm (đpcm)
a) Tính MN:
Xét tam giác ABC ta có:
M là trung điểm AC (gt); N là trung điểm BC (gt)
=>MN là đường trung bình của tam giác ABC
=> MN // BC; MN=BC/2
=>MN= 12/2=6
b) Tính diện tích tam giác ABC:
Xét tam giác ABC vuông tại A ta có:
AB2+AC2=BC2 (định lý Pytagor thuận)
122+AC2=202
144+AC2=400
AC2=400-144=256
AC=16
Diện tích tam giác ABC là:
S tam giác ABC= AB*AC=12*16=192
c) CMR: tứ giác ABCD là hình bình hành:
Xét tứ giác ABCD ta có:
M là trung điểm của AC (gt)
M là trung điểm của BD (gt)
AC cắt BD tại M
=> tứ giác ABCD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)
d) CM: tứ giác ABEC là hình chữ nhật:
Ta có :
CD=AB ( ABCD là hình bình hành)
CD=CE (gt)
=>CE=AB
Xét tứ giác ABEC ta có:
AB=CE (cmt)
AB//CE (AB//CD; C thuộc DE)
=>tứ giác ABEC là hình bình hành ( tứ giác có một cặp cạnh đối vừa song song vừa bằng nhau)
mà góc BAC= 900 (tam giác ABC vuông tại A)
=.>hình bình hành ABEC là hình chữ nhật (tứ giác là hình bình hành có một góc vuông)