Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Holder:
\(\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)^2\left[a^2\left(b+c\right)^2+b^2\left(c+a\right)^2+c^2\left(a+b\right)^2\right]\ge\left(a^2+b^2+c^2\right)^3\)
Mặt khác:
\(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\ge\dfrac{3}{2}\left(a^2b^2+b^2c^2+c^2a^2+abc\left(a+b+c\right)\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2\ge\dfrac{3}{4}\left[a^2\left(b+c\right)^2+b^2\left(c+a\right)^2+c^2\left(a+b\right)^2\right]\)
\(\Rightarrow\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)^2\ge\dfrac{3}{4}\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\sqrt{3}}{2}\sqrt{a^2+b^2+c^2}\)
\(\Rightarrow P\ge\dfrac{\sqrt{3}}{2}\sqrt{a^2+b^2+c^2}+\dfrac{4}{\sqrt{a^2+b^2+c^2+1}}\)
Đặt \(\sqrt{\dfrac{a^2+b^2+c^2}{3}}=x>0\)
\(\Rightarrow P\ge\dfrac{3x}{2}+\dfrac{4}{\sqrt{3x^2+1}}\)
Ta sẽ chứng minh \(P\ge\dfrac{7}{2}\)
Thật vậy, với \(x\ge\dfrac{7}{3}\Rightarrow P>\dfrac{3x}{2}\ge\dfrac{7}{2}\) (đúng)
Với \(0< x\le\dfrac{7}{3}\) ta cần chứng minh:
\(\dfrac{3x}{2}+\dfrac{4}{\sqrt{3x^2+1}}\ge\dfrac{7}{2}\Leftrightarrow\dfrac{4}{\sqrt{3x^2+1}}\ge\dfrac{7-3x}{2}\)
\(\Leftrightarrow64\ge\left(7-3x\right)^2\left(3x^2+1\right)\)
\(\Leftrightarrow3\left(x-1\right)^2\left(-9x^2+24x+5\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left[3x\left(7-3x\right)+3x+5\right]\ge0\) (đúng)
Vậy \(P_{min}=\dfrac{7}{2}\) khi \(x=1\) hay \(a=b=c=1\)
Áp dụng bđt Schwarz ta có:
\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).
\(3=ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\Rightarrow abc\le1\)
\(\dfrac{1}{1+a^2\left(b+c\right)}=\dfrac{1}{1+a\left(ab+ac\right)}=\dfrac{1}{1+a\left(3-bc\right)}=\dfrac{1}{1+3a-abc}=\dfrac{1}{3a+\left(1-abc\right)}\le\dfrac{1}{3a}\)
Tương tự và cộng lại:
\(VT\le\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}=\dfrac{ab+bc+ca}{3abc}=\dfrac{3}{3abc}=\dfrac{1}{abc}\)
Mẫu số to quá nên ko nghĩ ra cách giải đẹp mắt:
Dự đoán dấu "=" xảy ra tại \(a=b=c=1\), ta cần c/m: \(A\le\dfrac{3}{16}\)
Do \(\sum\dfrac{a+1}{a^2+1+10a+20}\le\sum\dfrac{a+1}{2a+10a+20}=\sum\dfrac{a+1}{12a+20}\)
Nên ta chỉ cần chứng minh: \(\sum\dfrac{a+1}{3a+5}\le\dfrac{3}{4}\Leftrightarrow\sum\left(\dfrac{3a+3}{3a+5}-1\right)\le\dfrac{9}{4}-3\)
\(\Leftrightarrow\sum\dfrac{1}{3a+5}\ge\dfrac{3}{8}\Leftrightarrow\dfrac{3\left(ab+bc+ca\right)+10\left(a+b+c\right)+25}{\left(3a+5\right)\left(3b+5\right)\left(3c+5\right)}\ge\dfrac{1}{8}\) (quy đồng)
\(\Leftrightarrow\dfrac{4\left(a+b+c\right)+3\left(ab+bc+ca+2\left(a+b+c\right)\right)+25}{27abc+45\left(ab+bc+ca+2\left(a+b+c\right)\right)-15\left(a+b+c\right)+125}\ge\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4\left(a+b+c\right)+52}{27abc-15\left(a+b+c\right)+530}\ge\dfrac{1}{8}\)
\(\Leftrightarrow47\left(a+b+c\right)\ge27abc+114\)
Điều này đúng do:
\(9=2\left(a+b+c\right)+ab+bc+ca\le2\left(a+b+c\right)+\dfrac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow\left(a+b+c-3\right)\left(a+b+c+9\right)\ge0\)
\(\Rightarrow a+b+c\ge3\)
Và: \(9=a+b+c+a+b+c+ab+bc+ca\ge9\sqrt[9]{a^4b^4c^4}\)
\(\Rightarrow abc\le1\)
\(\Rightarrow\left\{{}\begin{matrix}47\left(a+b+c\right)\ge141\\27abc+114\le27+114=141\end{matrix}\right.\) (đpcm)
\(\dfrac{a^5}{b^3+c^2}+\dfrac{b^3+c^2}{4}+\dfrac{a^4}{2}\ge3\sqrt[3]{\dfrac{a^9.\left(b^3+c^2\right)}{8\left(b^3+c^2\right)}}=\dfrac{3a^3}{2}\)
Tương tự và cộng lại:
\(\Rightarrow M-\dfrac{a^4+b^4+c^4}{2}+\dfrac{a^3+b^3+c^3}{4}+\dfrac{a^2+b^2+c^2}{4}\ge\dfrac{3}{2}\left(a^3+b^3+c^3\right)\)
\(\Rightarrow M\ge\dfrac{a^4+b^4+c^4}{2}+\dfrac{5}{4}\left(a^3+b^3+c^3\right)-\dfrac{3}{4}\)
Mặt khác ta có:
\(\dfrac{1}{2}\left(a^4+b^4+c^4\right)\ge\dfrac{1}{6}\left(a^2+b^2+c^2\right)^2=\dfrac{3}{2}\)
\(\left(a^3+a^3+1\right)+\left(b^3+b^3+1\right)+\left(c^3+c^3+1\right)\ge3\left(a^2+b^2+c^2\right)=9\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge9\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{15}{4}-\dfrac{3}{4}=...\)
Ta chứng minh BĐT sau cho các số dương:
\(x^5+y^5\ge xy\left(x^3+y^3\right)\)
\(\Leftrightarrow x^5-x^4y+y^5-xy^4\ge0\)
\(\Leftrightarrow\left(x^4-y^4\right)\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)
Áp dụng:
\(\dfrac{a^5+b^5}{ab\left(a+b\right)}\ge\dfrac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\dfrac{a^3+b^3}{a+b}=a^2-ab+b^2\)
Tương tự và cộng lại:
\(VT\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)=2-\left(ab+ca+ca\right)\)
\(VT\ge4-\left(ab+bc+ca\right)-2=4\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\)
\(VT\ge4\left(ab+bc+ca\right)-\left(ab+bc+ca\right)-2=3\left(ab+bc+ca\right)-2\) (đpcm)
\(\dfrac{a^2+bc}{b+c}=\dfrac{\left(a+b\right)\left(a+c\right)-a\left(b+c\right)}{b+c}=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}-a\)
\(\Rightarrow VT=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}-\left(a+b+c\right)\)
Mặt khác áp dụng \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Rightarrow\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge a+b+b+c+a+c=2\left(a+b+c\right)\)
\(\Rightarrow VT\ge2\left(a+b+c\right)-\left(a+b+c\right)=a+b+c\) (đpcm)
\(M=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ca}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{7}{ab+bc+ca}\)
\(M\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}+\dfrac{7}{ab+bc+ca}=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ca}\)
\(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\)
\(\Rightarrow M\ge\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ca}=9+\dfrac{7.3}{\left(a+b+c\right)^2}=9+21=30\)
\(Min_M=30\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Áp dụng BĐT Svacxo
\(m\text{≥}\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ca}\)
\(=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{7}{ab+bc+ca}\)
≥ \(\dfrac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)\(+\dfrac{7}{ab+bc+ca}\)
\(=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ca}\)
CM BĐT: \(a^2+b^2+c^2\text{≥}ab+bc+ca\)
⇔ \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\text{≥}0\) (luôn đúng)
⇒ \(\left(a+b+c\right)^2\text{≥}3\left(ab+bc+ca\right)\)
⇒ \(\dfrac{\left(a+b+c\right)^2}{3}\text{≥}ab+bc+ca\)
⇒ \(m\text{≥}\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{\dfrac{\left(a+b+c\right)^2}{3}}=9+21=30\)
(vì a+b+c=1)
Vậy...