Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(A=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(\Leftrightarrow A=\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{1}{\sqrt{x}-2}\)
\(\Leftrightarrow A=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
b) Để \(A< -1\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< -1\)
\(\Leftrightarrow\sqrt{x}-2< -\sqrt{x}-1\)
\(\Leftrightarrow2\sqrt{x}< 1\)
\(\Leftrightarrow\sqrt{x}< \frac{1}{2}\)
\(\Leftrightarrow x< \frac{1}{4}\)
Vậy để \(A< -1\Leftrightarrow x< \frac{1}{4}\)
Ta có: \(4ab\le2a^2+2b^2\)
=> \(\sqrt{2a^2+7b^2+16ab}\le\sqrt{4a^2+9b^2+12ab}=\sqrt{\left(2a+3b\right)^2}=2a+3b\)
=> \(\frac{a^2}{\sqrt{2a^2+7b^2+16ab}}\ge\frac{a^2}{2a+3b}\)
Chứng minh tương tự
=> \(T\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\)
Áp dụng bđt bunhia dạng phân thức
=> \(T\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=1\)
=> \(MinT=1\)xảy ra khi a=b=c=5/3
Cần chứng minh: \(\sqrt{a^2-ab+b^2}\ge\frac{1}{2}\left(a+b\right)\)
Thật vậy: \(\sqrt{a^2-ab+b^2}\ge\frac{1}{2}\left(a+b\right)^2\Leftrightarrow4\left(a^2-ab+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow4a^2-4ab+4b^2-a^2-b^2-2ab\ge0\Leftrightarrow3\left(a^2+b^2-2ab\right)\ge0\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)
Áp dụng:\(P=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ac+a^2}}\)
\(\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(c+a\right)}=2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=3\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
Ta có: \(2.2.\sqrt{x^2+3}\le x^2+3+4=x^2+7\Leftrightarrow\sqrt{x^2+3}\le\frac{x^2+7}{4}\) (đẳng thức xảy ra khi x = 1.)
Áp dụng BĐT trên ta có:
\(P\ge4\left(\frac{a^3}{b^2+7}+\frac{b^3}{c^2+7}+\frac{c^3}{a^2+7}\right)=4.\left(\frac{a^4}{ab^2+7a}+\frac{b^4}{bc^2+7b}+\frac{c^4}{ca^2+7c}\right)\ge4.\frac{\left(a^2+b^2+c^2\right)^2}{ab^2+bc^2+ca^2+7\left(a+b+c\right)}\)
( Theo BĐT Schwarz)
Áp dụng BĐT Bunhiacopxki với 3 số ta có:
\(\left(ab^2+bc^2+ca^2\right)^2=\left(b.ab+c.bc+a.ca\right)^2\le\left(a^2+b^2+c^2\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\le\left(a^2+b^2+c^2\right)\frac{\left(a^2+b^2+c^2\right)^2}{3}=\frac{\left(a^2+b^2+c^2\right)^3}{3}=\frac{3^3}{3}=9\Rightarrow ab^2+bc^2+ca^2\le3\)
Ta có: \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow a+b+c\le3\)
Do đó:
\(P\ge4.\frac{\left(a^2+b^2+c^2\right)^2}{ab^2+bc^2+ca^2+7\left(a+b+c\right)}\ge\frac{4.3^2}{3+7.3}=\frac{3}{2}\)
Xảy ra đẳng thức khi a = b = c = 1.
Vậy min \(P=\frac{3}{2}\) khi a = b = c = 1.
mình đi, công đánh máy