K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2016

\(\frac{a.b}{a+b}=\frac{b.c}{b+c}=\frac{c.a}{c+a}\)

\(\Rightarrow\frac{a+b}{a.b}=\frac{b+c}{b.c}=\frac{c+a}{c.a}\) (vì a;b;c khác 0)

\(=\frac{a}{a.b}+\frac{b}{a.b}=\frac{b}{b.c}+\frac{c}{b.c}=\frac{c}{c.a}+\frac{a}{c.a}\)

\(=\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

=> a = b = c

\(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a.a^2+a.a^2+a.a^2}{a^3+a^3+a^3}=\frac{a^3+a^3+a^3}{a^3+a^3+a^3}=1\)

24 tháng 3 2017

\(\frac{ab}{a+b}=\frac{ac}{a+c}=\frac{bc}{b+c}\Rightarrow\frac{abc}{c\left(a+b\right)}=\frac{abc}{b\left(a+c\right)}=\frac{abc}{a\left(b+c\right)}\)

\(\Rightarrow c\left(a+b\right)=b\left(a+c\right)\Leftrightarrow ac+bc=ab+bc\Rightarrow ac=ab\Rightarrow c=b\) (1)

\(\Rightarrow b\left(a+c\right)=a\left(b+c\right)\Leftrightarrow ab+bc=ab+ac\Rightarrow bc=ac\Rightarrow b=a\) (2)

\(\Rightarrow c\left(a+b\right)=a\left(b+c\right)\Leftrightarrow ac+bc=ab+ac\Rightarrow bc=ab\Rightarrow c=a\) (3)

Từ (1) ; (2) ; (3) => \(a=b=c\) (ĐPCM)

20 tháng 11 2017

Ta có :

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{ab-bc}{\left(a+b\right)-\left(b+c\right)}=\frac{bc-ca}{\left(b+c\right)-\left(c+a\right)}=\frac{ab-ca}{\left(a+b\right)-\left(c+a\right)}\)

\(\Rightarrow a=b=c\)

\(\Rightarrow Q=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=1\)

8 tháng 1 2017

\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}\)

( ta lần lược lấy - (1) + (2) + (3) = (1) - (2) + (3) = (1) + (2) - (3) được)

\(=\frac{2bc}{5}=\frac{2ca}{3}=\frac{2ab}{1}\)

Ta thấy rằng a,b,c không thể = 0 vì như vậy thì a + b + c \(\ne69\)

\(\Rightarrow\hept{\begin{cases}a=\frac{c}{5}\\b=\frac{c}{3}\end{cases}}\)

Thế vào: a + b + c = 69

\(\Leftrightarrow\frac{c}{5}+\frac{c}{3}+c=69\)

\(\Rightarrow c=45\)   

\(\Rightarrow\hept{\begin{cases}a=9\\b=15\end{cases}}\)  

8 tháng 1 2017

Dùng tính chất dãy tỉ số bằng nhau mà làm