Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta có :
\(\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}}\) \(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\)
- Theo bất đẳng thức tam giác :
\(\hept{\begin{cases}a+b>c\\b+c>a\\a+c>b\end{cases}}\)\(\Rightarrow\hept{\begin{cases}c\left(a+b\right)>c^2\\a\left(b+c\right)>a^2\\b\left(a+c\right)>b^2\end{cases}}\) \(\Rightarrow\hept{\begin{cases}c^2< bc+ac\\a^2< ab+ac\\b^2< ab+bc\end{cases}}\) \(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
(a2+b2+c2)2>2(a4+b4+c4)
<=> a4 + b4 + c4+ 2a2b2 + 2a2c2 + 2b2c2 > 2(a4 + b4 + c4)
<=> a4 + b4 + c4 - 2a2b2 - 2a2c2 - 2b2c2 < 0
<=> (a2 - b2 - c2)2 - 4b2c2 <0
<=> (a2 - b2 - c2)2 <4b2c2
<=> a2 - b2 - c2<4b2c2
<=> a2 < (b+c)2
<=> a < b+c ( a,b,c >0)
CMTT với b và c ta có
b < a + c
c< b + a
>>> ĐPCM
bạn oi tra loi gium cau hoi tren minh voi câu hình thang kìa đi ma năn nỉ đó mà
đặt b+c-a=x,a+c-b=y,a+b-c=z thì x,y,z>0 do a,b,c>0
=>x+y+z=a+b+c
có a=(y+z)/2 , b=(z+x)/2 ,c=(x+y)/2
A=(y+z)/2x + (z+x)/2y + (x+y)/2z =1/2[(x/y+y/x)+(y/z+z/y)+(x/z+z/x)
Áp dụng bđt cosi : x/y+y/x >= 2,y/z+z/y >= 2,z/x+x/z >= 2
=>A >= 1/2.6=3 (đpcm)
Dấu "=" xảy ra <=> x=y=z<=>b+c-a=a+c-b=a+b-c<=>a=b=c <=> tam giác đó là tam gíac đều
Áp dụng bđt Cauchy-Schawrz dạng Engel ta có:
A = a^2/ab+ac-a^2 + b^2/ab+bc-b^2 + c^2/ac+bc-c^2
A \(\ge\)(a+b+c)^2/2.(ab+bc+ca)-(a^2+b^2+c^2)
A \(\ge\)a^2+b^2+c^2+2.(ab+bc+ca)/2.(ab+bc+ca)-(a^2+b^2+c^2)
A \(\ge\)2.(ab+bc+ca)-(a^2+b^2+c^2)/2.(ab+bc+ca)-(a^2+b^2+c^2) + 2.(a^2+b^2+c^2)/2.(ab+bc+ca)-(a^2+b^2+c^2)
A \(\ge\)1 + 2.(a^2+b^2+c^2)/2.(a^2+b^2+c^2)-(a^2+b^2+c^2)
A \(\ge\) 1 + 2 = 3 (đpcm)
Dấu "=" xảy ra khi a = b = c