Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : a/b+c = b/a+c = c/a+b => b+c/a = a+c/b = a+b/c
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
b+c/a = a+c/b = a+b/c = b+c+a+c+a+b/a+b+c = 2
=> P = 2+ 2 + 2 =6
k mk nha
Trần Hữu Ngọc Minh bn tham khảo nha:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}=\frac{a+b+c}{"b+c"+"a+c"+"a+b"}=\frac{a+b+c}{2."a+b+c"}\)
Xét 2 trường hợp, ta có:
\(\cdot TH1:a+b+c=0\)thì \(\hept{\begin{cases}b+c=-a\\a+c=-b\\a+b=-c\end{cases}}\)
Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+-1+-1=-3\)
Không phụ thuộc vào các giá trị a,b,c 1:
\(\cdot TH2:a+b+c\ne0\)thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2."a+b+c"}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)
Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}\)
Không phụ thuộc vào các giá trị a,b,c 2
Từ 1 và 2 \(\Rightarrow\)đpcm
\(\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=-\frac{b\left(a-b\right)+c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}\Rightarrow\frac{a}{\left(b-c\right)^2}=-\frac{b\left(a-b\right)+c\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-c\right)}\)
sau đó chứng minh tương tự và cộng theo từng vế thôi
Bài 1
*Chứng minh bằng AM-GM
Áp dụng bất đẳng thức AM-GM ta có :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}\Rightarrow}\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\sqrt[3]{abc\cdot\frac{1}{abc}}=9\)
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=b=c
Bài 1
*Chứng minh bằng Cauchy-Schwarz
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)
=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\cdot\frac{9}{a+b+c}=9\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b=c
Đặt \(x=\frac{2}{a};\) \(y=\frac{4}{b};\) \(z=\frac{1}{c}\)
(Vì \(a,b,c\in R^+\) nên suy ra \(x,y,z>0\) )
Khi đó, điều kiện (giả thiết) đã cho trở thành \(\frac{x^3+y^3}{xyz}+2\left(\frac{x}{y}+\frac{y}{x}\right)=6\) \(\left(\text{*}\right)\)
Với điều kiện mà \(x,y,z\) nhận được trên thì ta dễ dàng chứng minh được:
\(x^3+y^3\ge xy\left(x+y\right)\)
Do đó, \(\frac{x^3+y^3}{xyz}\ge\frac{xy\left(x+y\right)}{xyz}=\frac{x+y}{z}\)
Mặt khác, nhờ vào bđt Cauchy và yếu tố chủ chốt là \(x,y>0\), ta có đánh giá sau: \(\frac{x}{y}+\frac{y}{x}\ge2\)
nên \(6=\frac{x^3+y^3}{xyz}+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge\frac{x+y}{z}+4\)
\(\Rightarrow\) \(0< \frac{x+y}{z}\le2\)
\(--------------\)
Ta có:
\(P=\frac{x}{y+2z}+\frac{y}{2z+x}+\frac{4z}{x+y}\ge\frac{x^2}{xy+2xz}+\frac{y^2}{2yz+xy}+\frac{4z}{x+y}\)
\(\ge\frac{\left(x+y\right)^2}{2xy+2z\left(x+y\right)}+\frac{4z}{x+y}\ge\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}+2z\left(x+y\right)}+\frac{4z}{x+y}=\frac{2\left(x+y\right)}{x+y+4z}+\frac{4z}{x+y}\)
Tóm lại: \(P\ge\frac{\frac{2\left(x+y\right)}{z}}{\frac{x+y}{z}+4}+\frac{4}{\frac{x+y}{z}}\)
\(--------------\)
Đặt \(t=\frac{x+y}{z}\) \(\left(0< t\le2\right)\). Ta biểu diễn bất đẳng thức trên dưới dạng biến \(t\) như sau:
\(P\ge\frac{2t}{t+4}+\frac{4}{t}=\frac{2t}{t+4}+\frac{4}{t+4}+\frac{8}{t\left(t+4\right)}+\frac{8}{t\left(t+4\right)}\ge3\sqrt[3]{\frac{64t}{t\left(t+4\right)^3}}+\frac{8}{t\left(t+4\right)}\)
\(\ge\frac{12}{t+4}+\frac{8}{t\left(t+4\right)}\ge\frac{12}{2+4}+\frac{8}{2.6}=\frac{8}{3}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\\frac{x+y}{z}=2\end{cases}}\) \(\Leftrightarrow\) \(x=y=z\) \(\Leftrightarrow\) \(2a=b=4c\)
Vậy, \(P\) đạt giá trị nhỏ nhất là \(\frac{8}{3}\) khi \(2a=b=4c\)
Ta có
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Rightarrow\left\{\begin{matrix}\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}\\\frac{b}{c-a}=-\frac{a}{b-c}-\frac{c}{a-b}\\\frac{c}{a-b}=-\frac{a}{b-c}-\frac{b}{c-a}\end{matrix}\right.\) (1)
Mà
\(\left\{\begin{matrix}\frac{a}{\left(b-c\right)^2}=\frac{a}{b-c}.\frac{1}{b-c}\\\frac{b}{\left(c-a\right)^2}=\frac{b}{c-a}.\frac{1}{c-a}\\\frac{c}{\left(a-b\right)^2}=\frac{c}{a-b}.\frac{1}{a-b}\end{matrix}\right.\)
Ta có : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
\(\Rightarrow\frac{a}{b-c}.\frac{1}{b-c}+\frac{b}{c-a}.\frac{1}{c-a}+\frac{c}{a-b}.\frac{1}{a-b}=0\)
Thay điều (1) vào biểu thức ta có :
\(\frac{a}{b-c}.\frac{1}{b-c}+\frac{b}{c-a}.\frac{1}{c-a}+\frac{c}{a-b}.\frac{1}{a-b}=0\)
\(\Rightarrow\left(-\frac{b}{c-a}-\frac{c}{a-b}\right).\frac{1}{b-c}+\left(-\frac{a}{b-c}-\frac{c}{a-b}\right).\frac{1}{c-a}+\left(-\frac{a}{b-c}-\frac{b}{c-a}\right).\frac{1}{a-b}=0\)
\(\Rightarrow-\frac{b}{\left(c-a\right)\left(b-c\right)}-\frac{c}{\left(a-b\right)\left(b-c\right)}-\frac{a}{\left(b-c\right)\left(c-a\right)}-\frac{c}{\left(a-b\right)\left(c-a\right)}-\frac{a}{\left(b-c\right)\left(a-b\right)}-\frac{b}{\left(c-a\right)\left(a-b\right)}=0\)
\(\Rightarrow-\frac{b}{\left(c-a\right)\left(b-c\right)}-\frac{a}{\left(c-a\right)\left(b-c\right)}-\frac{c}{\left(a-b\right)\left(b-c\right)}-\frac{a}{\left(a-b\right)\left(b-c\right)}-\frac{c}{\left(c-a\right)\left(a-b\right)}-\frac{b}{\left(c-a\right)\left(a-b\right)}=0\)
\(\Rightarrow-\frac{b-a}{\left(c-a\right)\left(b-c\right)}-\frac{c-a}{\left(a-b\right)\left(b-c\right)}-\frac{c-b}{\left(c-a\right)\left(a-b\right)}=0\)
\(\Rightarrow-\left[\frac{b+a}{\left(c-a\right)\left(b-c\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}+\frac{c+b}{\left(c-a\right)\left(a-b\right)}\right]=0\)
\(\Rightarrow-\left[\frac{\left(b+a\right)\left(a-b\right)^2\left(b-c\right)\left(c-a\right)+\left(c+a\right)\left(c-a\right)^2\left(b-c\right)\left(a-b\right)+\left(c+b\right)\left(b-c\right)^2\left(c-a\right)\left(a-b\right)}{\left(b-c\right)^2\left(c-a\right)^2\left(a-b\right)^2}\right]=0\)
\(\Rightarrow-\left\{\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left[\left(b+a\right)\left(a-b\right)+\left(c+a\right)\left(c-a\right)+\left(b+c\right)\left(b-c\right)\right]}{\left(b-c\right)^2\left(c-a\right)^2\left(a-b\right)^2}\right\}=0\)
\(\Rightarrow-\left[\frac{\left(b+a\right)\left(b-a\right)+\left(c+a\right)\left(c-a\right)+\left(b+c\right)\left(b-c\right)}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)
\(\Rightarrow-\left[\frac{\left(a^2-b^2\right)+\left(c^2-a^2\right)+\left(b^2-c^2\right)}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)
\(\Rightarrow-\left[\frac{\left(-b^2+b^2\right)+\left(-a^2+a^2\right)+\left(-c^2+c^2\right)}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)
\(\Rightarrow-\left[\frac{0}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)
\(\Rightarrow0=0\) ( đpcm )