K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

 Có : a/b+c = b/a+c = c/a+b => b+c/a = a+c/b = a+b/c

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

b+c/a = a+c/b = a+b/c = b+c+a+c+a+b/a+b+c = 2

=> P = 2+ 2 + 2  =6

k mk nha

9 tháng 10 2020

SAI ROi

22 tháng 9 2017

Trần Hữu Ngọc Minh bn tham khảo nha:

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}=\frac{a+b+c}{"b+c"+"a+c"+"a+b"}=\frac{a+b+c}{2."a+b+c"}\)

Xét 2 trường hợp, ta có:

\(\cdot TH1:a+b+c=0\)thì \(\hept{\begin{cases}b+c=-a\\a+c=-b\\a+b=-c\end{cases}}\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+-1+-1=-3\)

Không phụ thuộc vào các giá trị a,b,c 1:

\(\cdot TH2:a+b+c\ne0\)thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2."a+b+c"}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}\)

Không phụ thuộc vào các giá trị a,b,c 2

Từ 1 và 2 \(\Rightarrow\)đpcm

2 tháng 5 2017

\(\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=-\frac{b\left(a-b\right)+c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}\Rightarrow\frac{a}{\left(b-c\right)^2}=-\frac{b\left(a-b\right)+c\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-c\right)}\)

sau đó chứng minh tương tự và cộng theo từng vế thôi 

23 tháng 3 2021

Bài 1

*Chứng minh bằng AM-GM

Áp dụng bất đẳng thức AM-GM ta có :

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}\Rightarrow}\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\sqrt[3]{abc\cdot\frac{1}{abc}}=9\)

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=b=c

23 tháng 3 2021

Bài 1

*Chứng minh bằng Cauchy-Schwarz

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\cdot\frac{9}{a+b+c}=9\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b=c

31 tháng 5 2016

Đặt  \(x=\frac{2}{a};\) \(y=\frac{4}{b};\)  \(z=\frac{1}{c}\)  

(Vì  \(a,b,c\in R^+\) nên suy ra  \(x,y,z>0\) )

Khi đó, điều kiện (giả thiết) đã cho trở thành  \(\frac{x^3+y^3}{xyz}+2\left(\frac{x}{y}+\frac{y}{x}\right)=6\)   \(\left(\text{*}\right)\)

Với điều kiện mà  \(x,y,z\)  nhận được trên thì ta dễ dàng chứng minh được:  

\(x^3+y^3\ge xy\left(x+y\right)\)  

Do đó,   \(\frac{x^3+y^3}{xyz}\ge\frac{xy\left(x+y\right)}{xyz}=\frac{x+y}{z}\)

Mặt khác, nhờ vào bđt Cauchy và yếu tố chủ chốt là  \(x,y>0\), ta có đánh giá sau:  \(\frac{x}{y}+\frac{y}{x}\ge2\) 

nên  \(6=\frac{x^3+y^3}{xyz}+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge\frac{x+y}{z}+4\)

\(\Rightarrow\)  \(0< \frac{x+y}{z}\le2\)

\(--------------\)

Ta có:

\(P=\frac{x}{y+2z}+\frac{y}{2z+x}+\frac{4z}{x+y}\ge\frac{x^2}{xy+2xz}+\frac{y^2}{2yz+xy}+\frac{4z}{x+y}\)

\(\ge\frac{\left(x+y\right)^2}{2xy+2z\left(x+y\right)}+\frac{4z}{x+y}\ge\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}+2z\left(x+y\right)}+\frac{4z}{x+y}=\frac{2\left(x+y\right)}{x+y+4z}+\frac{4z}{x+y}\)

Tóm lại:  \(P\ge\frac{\frac{2\left(x+y\right)}{z}}{\frac{x+y}{z}+4}+\frac{4}{\frac{x+y}{z}}\)

\(--------------\)

Đặt  \(t=\frac{x+y}{z}\)  \(\left(0< t\le2\right)\). Ta biểu diễn bất đẳng thức trên dưới dạng biến  \(t\)  như sau:

\(P\ge\frac{2t}{t+4}+\frac{4}{t}=\frac{2t}{t+4}+\frac{4}{t+4}+\frac{8}{t\left(t+4\right)}+\frac{8}{t\left(t+4\right)}\ge3\sqrt[3]{\frac{64t}{t\left(t+4\right)^3}}+\frac{8}{t\left(t+4\right)}\)

\(\ge\frac{12}{t+4}+\frac{8}{t\left(t+4\right)}\ge\frac{12}{2+4}+\frac{8}{2.6}=\frac{8}{3}\)

Dấu  \("="\) xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=y\\\frac{x+y}{z}=2\end{cases}}\)  \(\Leftrightarrow\)  \(x=y=z\)  \(\Leftrightarrow\)  \(2a=b=4c\)

Vậy,  \(P\) đạt giá trị nhỏ nhất là  \(\frac{8}{3}\) khi  \(2a=b=4c\)

2 tháng 1 2017

Ta có

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}\\\frac{b}{c-a}=-\frac{a}{b-c}-\frac{c}{a-b}\\\frac{c}{a-b}=-\frac{a}{b-c}-\frac{b}{c-a}\end{matrix}\right.\) (1)

\(\left\{\begin{matrix}\frac{a}{\left(b-c\right)^2}=\frac{a}{b-c}.\frac{1}{b-c}\\\frac{b}{\left(c-a\right)^2}=\frac{b}{c-a}.\frac{1}{c-a}\\\frac{c}{\left(a-b\right)^2}=\frac{c}{a-b}.\frac{1}{a-b}\end{matrix}\right.\)

Ta có : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

\(\Rightarrow\frac{a}{b-c}.\frac{1}{b-c}+\frac{b}{c-a}.\frac{1}{c-a}+\frac{c}{a-b}.\frac{1}{a-b}=0\)

Thay điều (1) vào biểu thức ta có :

\(\frac{a}{b-c}.\frac{1}{b-c}+\frac{b}{c-a}.\frac{1}{c-a}+\frac{c}{a-b}.\frac{1}{a-b}=0\)

\(\Rightarrow\left(-\frac{b}{c-a}-\frac{c}{a-b}\right).\frac{1}{b-c}+\left(-\frac{a}{b-c}-\frac{c}{a-b}\right).\frac{1}{c-a}+\left(-\frac{a}{b-c}-\frac{b}{c-a}\right).\frac{1}{a-b}=0\)

\(\Rightarrow-\frac{b}{\left(c-a\right)\left(b-c\right)}-\frac{c}{\left(a-b\right)\left(b-c\right)}-\frac{a}{\left(b-c\right)\left(c-a\right)}-\frac{c}{\left(a-b\right)\left(c-a\right)}-\frac{a}{\left(b-c\right)\left(a-b\right)}-\frac{b}{\left(c-a\right)\left(a-b\right)}=0\)

\(\Rightarrow-\frac{b}{\left(c-a\right)\left(b-c\right)}-\frac{a}{\left(c-a\right)\left(b-c\right)}-\frac{c}{\left(a-b\right)\left(b-c\right)}-\frac{a}{\left(a-b\right)\left(b-c\right)}-\frac{c}{\left(c-a\right)\left(a-b\right)}-\frac{b}{\left(c-a\right)\left(a-b\right)}=0\)

\(\Rightarrow-\frac{b-a}{\left(c-a\right)\left(b-c\right)}-\frac{c-a}{\left(a-b\right)\left(b-c\right)}-\frac{c-b}{\left(c-a\right)\left(a-b\right)}=0\)

\(\Rightarrow-\left[\frac{b+a}{\left(c-a\right)\left(b-c\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}+\frac{c+b}{\left(c-a\right)\left(a-b\right)}\right]=0\)

\(\Rightarrow-\left[\frac{\left(b+a\right)\left(a-b\right)^2\left(b-c\right)\left(c-a\right)+\left(c+a\right)\left(c-a\right)^2\left(b-c\right)\left(a-b\right)+\left(c+b\right)\left(b-c\right)^2\left(c-a\right)\left(a-b\right)}{\left(b-c\right)^2\left(c-a\right)^2\left(a-b\right)^2}\right]=0\)

\(\Rightarrow-\left\{\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left[\left(b+a\right)\left(a-b\right)+\left(c+a\right)\left(c-a\right)+\left(b+c\right)\left(b-c\right)\right]}{\left(b-c\right)^2\left(c-a\right)^2\left(a-b\right)^2}\right\}=0\)

\(\Rightarrow-\left[\frac{\left(b+a\right)\left(b-a\right)+\left(c+a\right)\left(c-a\right)+\left(b+c\right)\left(b-c\right)}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)

\(\Rightarrow-\left[\frac{\left(a^2-b^2\right)+\left(c^2-a^2\right)+\left(b^2-c^2\right)}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)

\(\Rightarrow-\left[\frac{\left(-b^2+b^2\right)+\left(-a^2+a^2\right)+\left(-c^2+c^2\right)}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)

\(\Rightarrow-\left[\frac{0}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right]=0\)

\(\Rightarrow0=0\) ( đpcm )