Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (a+b)3 = (a+b)(a+b)(a+b) = a3 + b3 + 3ab.(a+b)
Tương tự ta có: (a+b+c)3 = [(a+b) + c]3 = (a+b)3 + c3 + 3(a+b).c.(a+b+c)
= a3 + b3 + 3ab.(a+b) + c3 + 3(a+b).c.(a+b+c)
=> a3 + b3 + c3 = (a+b+c)3 - 3ab(a+b) - 3(a+b).c.(a+b+c) chia hết cho 6,vì:
a+ b+c chia hết cho 6 nên (a+b+c)3 chia hết cho 6 và 3(a+b).c.(a+b+c) chia hết cho 6
Tích ab(a+b) luôn chia hêt 2 ( Vì nếu 1 trong 2 số a; b chẵn hay a;b cùng chẵn thì tích a.b chẵn; nếu a;b cùng lẻ thì a+ b chẵn)
=> 3ab(a+b) luôn chia hết cho 6
Vậy a3 + b3 + c3 luôn chia hết cho 6
Xét hiệu : (a3 + b3 + c3) - (a + b + c) = a3 + b3 + c3 - a - b - c = (a3 - a) + (b3 - b) + (c3 - c) = a(a2 - 1) + b(b2 - 1) + c(c2 - 1) = a(a - 1)(a + 1) + b(b - 1)(b + 1) + c(c - 1)(c + 1)
a(a - 1)(a + 1) là tích 3 số tự nhiên liên tiếp nên a(a - 1)(a + 1) chia hết cho 2 và 3
Mà (2,3) = 1
=> a(a - 1)(a + 1) chia hết cho 6
Tương tự b(b - 1)(b + 1) chia hết cho 6
c(c -1)(c + 1) chia hết cho 6
=>(a3 + b3 + c3) - (a + b + c) chia hết cho 6
Mà a + b + c chia hết cho 6
=>a3 + b3 + c3 chia hết cho 6(đpcm)
a) Gọi ƯCLN(a ; b) = d
=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)
mà theo đề ra \(a^2+b^2⋮3\)
=> \(d⋮3\)
Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\)
b) Gọi ƯCLN(a ; b) = d
=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)
mà theo đề ra \(a^2+b^2⋮7\)
=> \(d⋮7\)
Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮7\\b⋮7\end{cases}}\)
B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3
b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)
Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6
+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7
+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7
+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7
Vậy a^7-a chia hết cho 7
b, a^7-a=a(a^6-1)
=a(a^3+1)(a^3-1)
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1)
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1)
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1)
+7a (a-1) (a+1) (a^2+a-1)
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
+7a (a-1) (a+1) (a^2+a-1)
+7a (a-1) (a+1) (a^2-a-6)
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7)
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)]
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7.
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7