Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhận được thông báo thì kéo chuột xuống xem bài giải của t ở phần duyệt bài nhé
dùng bđt cauchy chứng minh biểu thức trên >=2 rồi chứng minh dấu = không xảy ra
https://diendantoanhoc.net/topic/82335-cho-abc-la-d%E1%BB%99-dai-3-c%E1%BA%A1nh-c%E1%BB%A7a-tam-giac-co-chu-vi-b%E1%BA%B1ng-2-cmr-frac5227leq-a2b2c22abc-2/
Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)
\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)
Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)
"="<=>a=b=c=3
Ta có: Theo bất đẳng thức cauchy schwarz và bất đẳng thức cauchy với a;b;c>0 ta có:
\(\dfrac{1}{a^2}+\dfrac{1}{a^2}=\dfrac{\left(\sqrt{a}\right)^2}{a^3}+\dfrac{1}{a^2}\ge\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+a^2}\ge\dfrac{4\sqrt{a}}{a^3+a^2}\)(1)
Tương tự \(\dfrac{1}{b^2}+\dfrac{1}{b^2}\ge\dfrac{4\sqrt{b}}{b^3+b^2}\left(2\right);\dfrac{1}{c^2}+\dfrac{1}{c^2}\ge\dfrac{4\sqrt{c}}{c^3+c^2}\left(3\right)\)
Cộng từng vế (1) ;(2);(3) vế theo vế rồi chia hai vế cho 2 ta có đpcm
chuẩn hóa \(a^2+b^2+c^2=1\)
\(VT\ge\frac{3\sqrt{3}}{2}.\)
chúng ta cần chứng minh:\(\frac{a}{b^2+c^2}\ge\frac{3\sqrt{3}a^2}{2}\Leftrightarrow\frac{a}{1-a^2}\ge\frac{3\sqrt{3}a^2}{2}\)
\(\Leftrightarrow\frac{1}{1-a^2}\ge\frac{3\sqrt{3}a}{2}.\)
\(\Leftrightarrow a\left(1-a^2\right)\le\frac{2}{3\sqrt{3}}.\)
\(\Leftrightarrow a^2\left(1-a^2\right)^2\le\frac{4}{27}.\)
Mà\(\)
\(\Leftrightarrow2a^2\left(1-a^2\right)\left(1-a^2\right)\le\frac{\left(2a^2+1-a^2+1-a^2\right)^3}{27}=\frac{8}{27}.\left(dung\right)\)
Nên\(a^2\left(1-a^2\right)^2\le\frac{4}{27}\left(luondung\right)\)
Tương tự ta có: \(\frac{b}{a^2+c^2}\ge\frac{3\sqrt{3}b^2}{2};\frac{c}{a^2+b^2}\ge\frac{3\sqrt{3}c^2}{2}\)
Cộng lại ta có \(đpcm\)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Xem câu hỏi