K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

Theo bất đẳng thức tam giác:

\(\hept{\begin{cases}a< b+c\\b< a+c\\c< a+b\end{cases}}\Rightarrow\hept{\begin{cases}a^2< ab+ac\\b^2< ab+bc\\c^2< ac+bc\end{cases}}\)

Cộng các bất đẳng thức lại với nhau có điều cần CM

19 tháng 8 2016

Vì a,b,c là độ dài ba cạnh của một tam giác nên ta có : 

\(\begin{cases}a+b>c\\c+a>b\\b+c>a\end{cases}\) \(\Leftrightarrow\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ab+ac>a^2\end{cases}\)  \(\Rightarrow a^2+b^2+c^2>2\left(ab+bc+ac\right)\)

NV
7 tháng 5 2021

Do a;b;c là 3 cạnh của 1 tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\\b+c-a>0\end{matrix}\right.\)

BĐT đã cho tương đương:

\(\dfrac{a^2+2bc}{b^2+c^2}-1+\dfrac{b^2+2ac}{a^2+c^2}-1+\dfrac{c^2+2ab}{a^2+b^2}-1>0\)

\(\Leftrightarrow\dfrac{a^2-\left(b^2-2bc+c^2\right)}{b^2+c^2}+\dfrac{b^2-\left(a^2-2ac+c^2\right)}{a^2+c^2}+\dfrac{c^2-\left(a^2-2ab+b^2\right)}{a^2+b^2}>0\)

\(\Leftrightarrow\dfrac{a^2-\left(b-c\right)^2}{b^2+c^2}+\dfrac{b^2-\left(a-c\right)^2}{a^2+c^2}+\dfrac{c^2-\left(a-b\right)^2}{a^2+b^2}>0\)

\(\Leftrightarrow\dfrac{\left(a+c-b\right)\left(a+b-c\right)}{b^2+c^2}+\dfrac{\left(a+b-c\right)\left(b+c-a\right)}{a^2+c^2}+\dfrac{\left(b+c-a\right)\left(a+c-b\right)}{a^2+b^2}>0\) (luôn đúng)

Vậy BĐT đã cho đúng

18 tháng 4 2022

non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì

 

18 tháng 4 2022

đúng trẻ trâu

20 tháng 12 2016

a^2+b^2+c^2=ab+bc+ac

=>2a^2+2b^2+2c^2=2ab+2bc+2ac

<=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0

<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0

<=>(a-b)^2+(b-c)^2+(c-a)^2=0

=>a-b=b-c=c-a=0

=>a=b;b=c;c=a

=>a=b=c

=>tam giác abc là tam giác đều

8 tháng 1 2020

hình bạn tự vẽ nhé

a) Xét tứ giác ADBC có AB giao DC tại I là trung điểm của mỗi đường

\(\Rightarrow ADBC\)là hình bình hành (dhnb)

b)  Xét tam giác ABC có: 

I là trung điểm của AB (gt) , M là trung điểm của BC(gt)

\(\Rightarrow IM\)là đường trung bình tam giác ABC

\(\Rightarrow IM//AC\left(tc\right)\)

Mà \(AB\perp AC\)

\(\Rightarrow IM\perp AB\)( từ vuông góc đến song song )

c) Áp dụng định lý Py-ta-go vào tam giác ABC ta được:

\(AB^2+AC^2=BC^2\)

\(AB^2+5^2=13^2\)

\(AB^2=144\)

\(\Rightarrow AB=12\left(cm\right)\)

\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.12.5=30\left(cm^2\right)\)

Vậy ...

22 tháng 10 2021

\(a^2-b^2-c^2+2bc\)

\(=a^2-\left(b-c\right)^2\)

\(=\left(a-b+c\right)\left(a+b-c\right)\)