Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>BD//CA
c: Xét ΔABC và ΔDCB có
AB=DC
BC chung
AC=DB
=>ΔABC=ΔDCB
d: Xét tứ giác AEDF có
AE//DF
AE=DF
=>AEDF là hình bình hành
=>AD cắt EF tại trung điểm của mỗi đường
=>E,M,F thẳng hàng
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB=CD và AB//CD
b: Ta có: ABDC là hình bình hành
nên BD//AC
c: Ta có: AB//CD
nên \(\widehat{ABC}=\widehat{DCB}\)
a) Xét \(\Delta MAB\)và \(\Delta MDC\)có:
MA = MD (gt)
\(\widehat{BMA}=\widehat{CMD}\)(2 góc đối đỉnh)
MB = MC (gt)
\(\Rightarrow\Delta MAB=\Delta MDC\left(c-g-c\right)\)
\(\Rightarrow AB=DC\)(2 cạnh tương ứng)
\(\widehat{BAM}=\widehat{CDM}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow AB//CD\)
b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:
MA = MD (gt)
\(\widehat{AMC}=\widehat{BMD}\)(2 góc đối đỉnh)
MB = MC (gt)
\(\Rightarrow\Delta ACM=\Delta DBM\left(c-g-c\right)\)
\(\Rightarrow AC=DB\)(2 cạnh tương ứng)
Xét \(\Delta BAC\)và \(\Delta CDB\)có:
AB = DC (cmt)
AC = DB (cmt)
BC là cạnh chung
\(\Rightarrow\Delta BAC=\Delta CDB\left(c-c-c\right)\)
\(\Rightarrow\widehat{BAC}=\widehat{CDB}\)(2 góc tương ứng)
c) Bn tự lm nhá!! Phần này mk chưa nghĩ ra. Tốn chất xám lắm!!!!!
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB//DC
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD