Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(n^2-n=n\left(n-1\right)\) luôn là số chẵn với mọi số nguyên \(n\)
nên do đó, \(a^2+b^2+c^2+d^2-\left(a+b+c+d\right)\) là số chẵn \(\left(1\right)\)
Mà \(a^2+b^2=c^2+d^2\) (theo giả thiết)
nên \(a^2+b^2+c^2+d^2=2\left(a^2+b^2\right)\) là một số chẵn \(\left(2\right)\) (do tích trên chia hết cho \(2\))
\(\left(1\right)\) và \(\left(2\right)\) suy ra \(a+b+c+d\) là một số chẵn
Vậy, \(a+b+c+d\) luôn là hợp số với \(a,b,c,d\in Z^+\)
bài này chứng minh bài toán phụ, khá là phức tạp, trình bày ra chắc chết quá
bài này mình thấy tren mạng đăng lên đó, có kết quả nhưng ko copy được
Ta có : \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Tương tự : \(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b\) ; \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\left(a+b+c\right)-\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}=\frac{3}{2}\)
Vậy Min = 3/2 \(\Leftrightarrow a=b=c=1\)