Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT BCS : \(\frac{3M}{4}=\left(1^2+1^2+1^2\right).\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\frac{9}{4}\Rightarrow M\ge3\)
Đẳng thức xảy ra khi a = b = c = 1/2
Vậy ..................................
\(M\ge\dfrac{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{b}+\sqrt{c}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{c}+\sqrt{a}\right)^2}}{2}\)
\(M\ge\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có
\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)+a^2+b^2+c^2=\left(a+b+c\right)^2\)
\(\Leftrightarrow4\left(a^2+b^2+c^2\right)\ge\frac{4}{3}.\left(a+b+c\right)^2=\frac{4}{3}.\frac{9}{16}=\frac{3}{4}\)
Đạt được khi \(a=b=c=\frac{1}{4}\)
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
Theo nguyên lí Dirichlet, trong ba số a2, b2, c2 tồn tại 2 số cùng phía với 1.
Giả sử hai số đó là a2 và b2.
Ta có \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow\left(a^2+2\right)\left(b^2+2\right)\ge3\left(a^2+b^2+1\right)\)
\(\Rightarrow\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\ge3\left(a^2+b^2+1\right)\left(1+1+c^2\right)\ge3\left(a+b+c\right)^2\) (Theo bất đẳng thức Cauchy - Schwarz).
Mà a + b + c = 3 nên \(S\ge27\).
Đẳng thức xảy ra khi a = b = c = 1.
Vậy Min S = 27 khi a = b = c = 1.
a+b+c=3/2 => (a+b+c)2 = 9/4 <=> a2+b2+c2+2ac+2bc+2ac =9/4
mà ta có a2+b2+c2>= ac+bc+ac ( dễ dàng chứng minh được khi nhân hai lên rồi nhóm thành hằng đẳng thức hai số)
=> 3(a2+b2+c2)>= 9/4 <=> 4(a2+b2+c2) >= 4
=> min M=4 dấu bằng xảy ra <=> a=b=c=1/2
mình nghĩ bạn Hoài có cách làm đúng nhưng kết quả sai
Mình dựa trên bài bạn thì được kết quả là Min=3 cơ