K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Mình giúp bạn nha :33

Áp dụng BĐT Cô - si  cho 2 số dương ta được :

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\) (1)

\(\frac{a}{b^2}+\frac{b}{a^2}\ge2\sqrt{\frac{a}{b^2}\cdot\frac{b}{a^2}}=2\sqrt{\frac{1}{ab}}\ge2\sqrt{\frac{1}{\frac{a^2+b^2}{2}}}=2.1=2\) (2)

( Do BĐT \(a^2+b^2\ge2ab\) \(\Rightarrow\frac{1}{ab}\ge\frac{1}{\frac{a^2+b^2}{2}}=1\) )

Nhân hai vế của BĐT (1) và (2) ta được BĐT cần chứng minh.

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

18 tháng 2 2020

Ta có a^2 +b^2=2

Áp dụng BĐT Cosi

\(ab\le\frac{a^2+b^2}{2}=1\)

\(\frac{a}{b}+\frac{b}{a}\ge2\left(1\right)\)

\(\frac{a}{b^2}+\frac{b}{a^2}\ge2\sqrt{\frac{a}{b^2}\cdot\frac{b}{a^2}}=2\sqrt{\frac{1}{ab}}\ge2\left(2\right)\)

từ (1),(2) ta có ĐPCM

31 tháng 7 2017

Áp dụng BĐT Schwarz ta có:

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left(2\left(a+b+c\right)\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)

Dấu ''='' xảy ra bạn tự giải nha.

3 tháng 8 2017

bạn có thể giải rõ dc ko 

23 tháng 2 2019

Áp dụng bđt Cauchy-Schwarz:

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left(2a+2b+2c\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

30 tháng 8 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)

Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)

Ta có:

\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)

Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)

\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Ta có:\(a+b+c=0\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)

30 tháng 8 2019

Mách mk nốt 2 bài kia vs

12 tháng 1 2017

tích cho tớ nha cậu, mơn nhìu ạk

12 tháng 1 2017

Ai biết cách làm thì nhanh tay giải giùm mình nhé!!!!!!!!!!!!

mk đang cần gấp....<3<3<3<3<3<3