Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
tự vẽ hình
a) Xét ΔADE có :
HE là đường trung tuyến của AD HA=HD )(1)
Ta thấy HC=12BC ( AH là đường trung tuyến của BC )
Mà BC = CE (gt )
⇒HC=12CE (2)
Từ (1) và (2) ⇒C là trọng tâm của ΔADE
b) Hơi khó đấy :)
Xét ΔAHB và ΔAHC có :
HAHA chung
HB=HC ( AH là đường trung tuyến của BC )
AB=AC( ΔABC cân tại A )
Do đó : ΔAHB=ΔAHC(c−c−c)
⇒AHBˆ=AHCˆ( hai góc tương ứng )
Mà AHBˆ+AHCˆ=1800
⇒AHB^=AHC^=1800/2=90o
Xét ΔAHEvà ΔHED có :
HEHE chung
HA=HD( HE là đường trung tuyến của AD )
AHEˆ=DHEˆ(=900)
Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )
⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)
Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )
Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE
⇒HM=DM (1)
Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM
Trở lại vào bài :
Mặt khác DM=ME(cmt)(2)
Từ (1) và (2) ⇒HM=ME
⇒ΔHME⇒ΔHME cân tại M
⇒MHEˆ=MEHˆ
Dễ thấy MEHˆ=HEAˆ(cmt)
⇒MHEˆ=HEAˆ
mà hai góc này ở vị trí so le trong
⇒HM⇒HM//AE(đpcm)
Hình bạn tự vẽ nha!
Bài 2:
a) Xét 2 \(\Delta\) vuông \(ABH\) và \(KBH\) có:
\(\widehat{AHB}=\widehat{KHB}=90^0\left(gt\right)\)
\(AH=KH\left(gt\right)\)
Cạnh BH chung
=> \(\Delta ABH=\Delta KBH\) (cạnh huyền - cạnh góc vuông)
b) Ta có: \(\Delta ABC\) vuông tại \(A\left(gt\right)\)
=> \(\widehat{B}+\widehat{C}=90^0\) (tính chất tam giác vuông)
=> \(2.\widehat{B}=90^0\)
=> \(\widehat{B}=90^0:2\)
=> \(\widehat{B}=45^0\)
=> \(45^0+\widehat{C}=90^0\)
=> \(\widehat{C}=90^0-45^0\)
=> \(\widehat{C}=45^0.\)
Xét \(\Delta BKC\) có:
\(\widehat{B}+\widehat{C}+\widehat{BKC}=180^0\) (định lí tổng 3 góc trong một tam giác)
Thay số vào ta được:
\(45^0+45^0+\widehat{BKC}=180^0\)
=> \(90^0+\widehat{BKC}=180^0\)
=> \(\widehat{BKC}=180^0-90^0\)
=> \(\widehat{BKC}=90^0.\)
Vậy \(\widehat{BKC}=90^0.\)
Chúc bạn học tốt!
Ta có :O là trung điểm của BC(gt)
O là trung điểm của AK(OA=OK)
=>ABKC là hình bình hành(dhnb)
Mà góc BAC = 90 độ
=>ABKC là hình chữ nhật (dhnb)
=>AB=CK và góc ACK = 90 độ
Xét tam giác ABC và tam giác CKA có:
AB=CK(cmt)
góc BAC=góc KCA( cùng bằng 90 độ)
AC chung
Vậy tam giác ABC = tam giác CKA(c.g.c)
b)Xét tam giác AHB và tam giác CHA có
góc AHB = góc CHA (=90 độ)
góc BAH =góc ACH(cùng phụ với góc B)
Vậy tam giác AHB đồng dạng tam giác CHA(g.g)
=>\(\dfrac{AB}{AH}=\dfrac{AC}{CH}\)(1)
Ta có AH\(\perp\)CH
ED\(\perp\)CH
=>AH//DE
Xét tam giác ACH có
AH//DE
=>\(\dfrac{AE}{HD}=\dfrac{AC}{CH}\)
=>\(\dfrac{AE}{AH}=\dfrac{AC}{CH}\)(do AH=AD)(2)
Từ(1) và (2) => \(\dfrac{AB}{AH}=\dfrac{AE}{AH}\)
=>AB=AE(đpcm)
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
b: Ta có: ΔABE=ΔADE
=>EB=ED
=>E nằm trên đường trung trực của BD(1)
Ta có: AB=AD
=>A nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AE là đường trung trực của BD
=>AE\(\perp\)BD tại H và H là trung điểm của BD
c: Xét ΔEBM và ΔEDC có
EB=ED
\(\widehat{BEM}=\widehat{DEC}\)(hai góc đối đỉnh)
EM=EC
Do đó: ΔEBM=ΔEDC
=>\(\widehat{EBM}=\widehat{EDC}\) và BM=DC
Ta có: \(\widehat{EBM}=\widehat{EDC}\)
\(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)
\(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)
Do đó: \(\widehat{EBM}+\widehat{EBA}=180^0\)
=>A,B,M thẳng hàng
Ta có: AB+BM=AM
AD+DC=AC
mà AB=AD và BM=DC
nên AM=AC
=>A nằm trên đường trung trực của MC(1)
Ta có: EM=EC
=>E nằm trên đường trung trực của MC(2)
Từ (1) và (2) suy ra AE là đường trung trực của MC
=>AE\(\perp\)MC
mà AE\(\perp\)BD
nên BD//MC