Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=5^2+12^2=169\)
=>\(BC=\sqrt{169}=13\left(cm\right)\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{5}{13}\)
nên \(\widehat{B}\simeq23^0\)
Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}\simeq90^0-23^0=67^0\)
b: Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-40^0=50^0\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)
=>\(BC=\dfrac{AC}{sinB}=\dfrac{5}{sin40}\simeq7,78\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB^2=BC^2-AC^2\)
=>\(AB\simeq\sqrt{7,78^2-5^2}\simeq5,96\left(cm\right)\)
BH=12^2/9=16cm
BC=16+9=25cm
AB=căn(16*25)=20cm
AC=căn(9*25)=15cm
sin B=AC/BC=3/5
tan C=AB/AC=20/15=4/3
\(\widehat{C}=60^0\)
BC=24cm
\(AC=12\sqrt{3}\left(cm\right)\)
ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{B}+30^0=90^0\)
=>\(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}\)
=>\(\dfrac{AB}{12}=sin30=\dfrac{1}{2}\)
=>AB=6(cm)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=144-36=108\)
=>\(AC=6\sqrt{3}\left(cm\right)\)
ABC vuông tại A
⇒ ∠B + ∠C = 90⁰
⇒ ∠B = 90⁰ - ∠C
= 90⁰ - 30⁰
= 60⁰
sinB = AC/BC
⇒ AC = BC . sinB
= 12 . sin60⁰
= 6√3 (cm)
sinC = AB/BC
⇒ AB = BC.sinC
= 12.sin30⁰
= 6 (cm)
ΔABC vuông tại A
=>AB^2+AC^2=BC^2
=>AB^2=15^2-12^2=81
=>AB=9cm
Xét ΔABC vuông tại A có sin C=AB/BC=9/15=3/5
nên góc C=37 độ
=>góc B=53 độ
Xét tam giác ABC vuông tại A áp dụng Py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AB=\sqrt{BC^2-AC^2}\)
\(\Leftrightarrow AB=\sqrt{15^2-12^2}=9\left(cm\right)\)
Xét tam giác ABC vuông tại A ta có:
\(sinC=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\)
\(\Rightarrow\widehat{C}\approx37^o\)
Mà: \(\widehat{C}+\widehat{B}=90^o\)
\(\Leftrightarrow\widehat{B}=90^o-37^o=53^o\)
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{13}{9}=144\)
\(\Leftrightarrow AC^2=\dfrac{1296}{13}\)
\(\Leftrightarrow AC=\dfrac{36\sqrt{13}}{13}cm\)
\(\Leftrightarrow AB=\dfrac{24\sqrt{13}}{13}cm\)