K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

M là trung điểm của BC

E là trung điểm của AC

Do đó: ME là đường trung bình

=>ME//AB và ME=AB/2

hay ME//AH và ME=AH

Xét tứ giác AEMB có ME//AB

nên AEMB là hình thang

mà \(\widehat{EAB}=90^0\)

nên AEMB là hình thang vuông

b: Xét tứ giác MHAE có 

ME//AH

ME=AH

Do đó: MHAE là hình bình hành

mà \(\widehat{HAE}=90^0\)

nên MHAE là hình chữ nhật

c: Xét tứ giác BHEM có 

ME//BH

ME=BH

Do đó: BHEM là hình bình hành

d: Xét tứ giác BFAM có

H là trung điểm của AB

H là trung điểm của MF

Do đó: BFAM là hình bình hành

mà MA=MB

nên BFAM là hình thoi

a: Xét ΔABC có 

M là trung điểm của BC

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//AB

Xét tứ giác ANMB có MN//AB

nên ANMB là hình thang

mà \(\widehat{NAB}=90^0\)

nên ANMB là hình thang vuông

b: Xét tứ giác AMCD có

N là trung điểm của AC
N là trung điểm của MD

Do đó; AMCD là hình bình hành

mà MA=MC

nên AMCD là hình thoi

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) \(N\), \(E\) lần lượt là trung điểm của \(AC\) và \(BC(gt)\); Suy ra \(NE\) là đường trung bình của tam giác \(ABC\).

Suy ra \(NE\) // \(AB\)

Suy ra tứ giác \(ANEB\) là hình thang.

Mà \(\widehat {NAB} = 90^\circ \) (do \(\Delta ABC\) vuông tại \(A\))

Do đó tứ giác \(ANEB\) là hình thang vuông.

b) \(M\), \(E\) lần lượt là trung điểm của \(AB\) và \(BC\) (gt);

Suy ra \(ME\) là đường trung bình của \(\Delta ABC\)

Suy ra \(ME\) // \(AC\) hay \(ME\) // \(AN\)

Mà  \(AM\) // \(NE\) (do \(AB\) // \(NE\))

Suy ra tứ giác \(AMEN\) là hình bình hành

Mà \(\widehat {{\rm{MAN}}} = 90^\circ \) nên \(AMEN\) là hình chữ nhật

c) Xét tứ giác \(BMFN\) có: \(MF\) // \(BN\) (gt) và \(BM\) // \(FN\) (do \(AB\) // \(NE\))

Suy ra \(BMFN\) là hình bình hành

Suy ra \(BM = FN\)

Mặt khác \(NE = AM\) (Tứ giác \(ANEM\) là hình chữ nhật) và \(AM = BM\)

Suy ra \(FN = NE\)

Tứ giác \(AFCE\) có \(N\) là trung điểm của \(AC\) và \(EF\)

Suy ra \(AFCE\) là hình bình hành

Mà \(AC \bot EF\)

Do đó \(AFCE\) là hình thoi

d) Xét tứ giác \(ADBE\) ta có: \(DE\) và \(AB\) cắt nhau tại \(M\) (gt)

Mà \(M\) là trung điểm của \(AB\) (gt)

\(M\) là trung điểm của \(DE\) (do \(D\) đối xứng với \(E\) qua \(M\))

Suy ra \(ADBE\) là hình bình hành

Suy ra \(AD\) // \(BE\) hay \(AD\) // \(EC\)

Mà \(AF\) // \(EC\)  (do \(AECF\) là hình thoi)

Suy ra \(A,D,F\) thẳng hàng (1)

Mà \(ADBE\) là hình bình hành

Suy ra \(BE\) // \(AD\)

Mà \(AF = EC\) (do \(AFCE\) là hình thoi); \(EB = EC\) (gt)

Suy ra \(AD = AF\)(2)

Từ (1) và (2) suy ra \(A\) là trung điểm của \(DF\)

20 tháng 12 2022

a: Xét tứ giác ADCH có

M là trung điểm chung của AC và HD

góc AHC=90 độ

Do đó: ADCH là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

Do đó: ADHE là hình bình hành

 

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

10 tháng 12 2016

Vẽ hình ra đi cậu ơi

10 tháng 12 2016

A B C E F D

7 tháng 12 2015

nfgmhkufhgfjkugyiotrkyhohrfidhgykrtyhijtrknuykotrhin

..................................

17 tháng 12 2022

a: Xét ΔBAC co BM/BA=BN/BC

nên MN//AC và MN=AC/2

=>AMNC là hình thang

mà góc MAC=90 độ

nen AMNC là hình thang vuông

b: Xét tứ giác ANBH có

M là trung điểm chung của AB và NH

NA=NB

nên ANBH là hình thoi