Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn AB^2+AC^2=20cm
AH=12*16/20=9,6cm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 12^2+16^2=20cm
AH=12*16/20=9,6cm
Tự vẽ hình chỉ bt làm ý a,c, thôi thông cảm T^T
a,Xét ΔHAB và ΔABC
\(\widehat{BHA}=\widehat{BAH}=90^o\)
Góc B chung
\(\Rightarrow\Delta HBA\text{∼ }\Delta ABC\)
c,Xét ΔABC ta có:
BC2=AC2+AB2
BC2=162+122
BC2=400
BC=√400=20cm
Ta có ΔHAB~ΔABC(câu a)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)
\(\Rightarrow AH=\frac{12.16}{20}=9,6cm\)
a.Xét \(\Delta HBA\)và \(\Delta ABC\)có
\(\widehat{BHA}=\widehat{BAC}=90^0\)
\(\widehat{B}\) chung
Do đó \(\Delta HBA\)đồng dạng \(\Delta ABC\)\((\)g.g\()\)
b.Từ \(\Delta HBA\)đồng dạng \(\Delta ABC\)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)
\(\Rightarrow AH.BC=AB.AC\)
c.Xét \(\Delta ABC\),có \(\widehat{A}\)=90 độ , theo định lý py -ta -go,ta có
\(BC^2=AB^2+AC^2\)
\(BC^2=12^2+16^2\)
\(BC^2=400\)\(\Rightarrow BC=\sqrt{400}\)
\(BC=20cm\)
Ta có \(\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)
\(\Rightarrow AH=\frac{12\times16}{20}\)
\(\Rightarrow AH=9,6cm\)
Chúc bạn học tốt.Phần d mình chưa giải đc nha
a. Xét ΔHBA và ΔABC:
\(\widehat{H}=\widehat{A}=90^0\left(gt\right)\)
\(\widehat{B}chung\)
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A:
Theo đ/lí Py - ta - go ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=12^2+16^2\)
\(BC^2=400\)
\(\Rightarrow BC=\sqrt{400}=20cm\)
Ta có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Rightarrow\dfrac{AH}{16}=\dfrac{12}{20}\)
\(\Rightarrow AH=9,6cm\)
c. Ta có DE là đường phân giác \(\widehat{ADB}\)
\(\rightarrow\dfrac{EA}{EB}=\dfrac{DA}{DB}\left(1\right)\)
DF là đường phân giác \(\widehat{ADC}\)
\(\rightarrow\dfrac{FC}{FA}=\dfrac{DC}{DA}\left(2\right)\)
AD là đường phân giác \(\widehat{ABC}\)
\(\rightarrow\dfrac{DC}{DB}=\dfrac{AC}{AB}\left(3\right)\)
Từ (1) và (2),(3) \(\Rightarrow\) \(\dfrac{EA}{EB}.\dfrac{FC}{FA}.\dfrac{DB}{DC}=\dfrac{DA}{DB}.\dfrac{DC}{DA}.\dfrac{AC}{AB}\)
\(\Rightarrow\dfrac{EA}{EB}.\dfrac{FC}{FA}.\dfrac{DC}{DB}=\dfrac{DB}{DC}.\dfrac{AC}{AB}=\dfrac{AB}{AC}.\dfrac{AC}{AB}=1\)
Vậy ...
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b:BC=căn 12^2+16^2=20cm
AH=12*16/20=9,6cm
a: Xét ΔHBA và ΔABC có
\(\widehat{HBA}\) chung
\(\widehat{BHA}=\widehat{BAC}\left(=90^0\right)\)
Do đó:ΔHBA~ΔABC