Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do BM là tia phân giác của ABC (gt)
⇒ ∠ABM = ∠DBM
Xét hai tam giác vuông: ∆ABM và ∆DBM có:
BM là cạnh chung
∠ABM = ∠DBM (cmt)
⇒ ∆ABM = ∆DBM (cạnh huyền - góc nhọn)
⇒ BA = BD (hai cạnh tương ứng)
b) Xét hai tam giác vuông: ∆ABC và ∆DBE có:
BA = BD (cmt)
∠B chung
⇒ ∆ABC = ∆DBE (cạnh huyền - góc nhọn)
c) Do ∠ABM = ∠DBM (cmt)
⇒ ∠EBM = ∠CBM
Do ∆ABC = ∆DBE (cmt)
⇒ BC = BE (hai cạnh tương ứng)
Xét ∆MBE và ∆MBC có:
BE = BC (cmt)
∠EBM = ∠CBM (cmt)
BM là cạnh chung
⇒ ∆MBE = ∆MBC (c-g-c)
⇒ ME = MC (hai cạnh tương ứng)
c) ∆BCE có:
CA ⊥ AB (ABC vuông tại A)
⇒ CA ⊥ BE
⇒ CA là đường cao của ∆BCE (1)
MD ⊥ BC (gt)
⇒ ED ⊥ BC
⇒ ED là đường cao thứ hai của ∆BCE (2)
M là giao điểm của AC và ED
⇒ M là giao điểm của ba đường cao của ∆BCE
Mà BH ⊥ CE (gt)
⇒ BH là đường cao thứ ba của ∆BCE
⇒ B, M, H thẳng hàng
nếu bạn ko thấy ảnh thì zô thống kê hỏi đáp của mình là thấy bài này nhá . ( cậu tìm câu nào có câu này r ấn zô xem nha )
hoặc link bài của mình nè
https://scontent-hkt1-1.xx.fbcdn.net/v/t1.15752-9/89947717_345887062999332_7304147707155709952_n.jpg?_nc_cat=110&_nc_sid=b96e70&_nc_ohc=Hj57duZ44dcAX91P2ra&_nc_ht=scontent-hkt1-1.xx&oh=7ea184f17776bd230198145c38f92aae&oe=5E95F1D5
Hình tự vẽ
a, \(\Delta BAM\)và \(\Delta BDM\)có
\(\widehat{ABM}=\widehat{DBM}\left(gt\right)\)
\(AM\): cạnh chung
\(\widehat{BAM}=\widehat{BDM}\left(=90^o\right)\)
\(\Rightarrow\Delta BAM=\Delta BDM\left(ch-gn\right)\)
\(\Rightarrow BA=BD\)(2 cạnh tương ứng )
Để nghĩ tiếp :(
Ta có:
∠AMB+∠ABM=90o
∠BMD+∠MBD=900
Mà ∠AMB=∠BMD (gt)
=> ∠ABM=∠MBD
Xét ΔBAM và ΔBAM có:
∠ABM=∠MBD (gt)
BM chung
∠ABM=∠MBD (cmt)
=> ΔBAM = ΔBAM (g-c-g)
=> BA=BD (2 cạnh tương ứng)
b,Xét ΔABC và ΔDBE có:
∠ABC chung
∠BAC=∠BDM=90o
BA=BD (cmt)
=> ΔABC = ΔDBE (g-c-g)
c,Ta có
BC⊥ED
AK⊥ED
=> BC//AK hay BC//AN
=> ∠ANM=∠MBC ( 2 góc slt) (1)
Mà:
DH⊥AC
BA⊥AC
=> BA//DH hay BA//DN
=> ∠MND=∠ABM ( 2 góc so le trong) (2)
Mà ∠ABM=∠MBD ( vì BM là tia phân giác của góc ABC)
Từ(1) và (2) =>∠ANM=∠MND
=> NM là tia phân giác của góc HMK
d,Ta có BM là tia phân giác của góc ABC (3)
Và NM là tia phân giác của góc HMK
Vì ∠ANM=∠MBC
∠MND=∠ABM
=> ∠ANM=∠MBC=∠MND=∠ABM
=> BN là tia phân giác của góc ABC (4)
Từ (3) và (4) => B,M,N thẳng hàng
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó:ΔBAM=ΔBDM
Suy ra:BA=BD
b: Xét ΔBDE vuông tại D và ΔBAC vuông tại A có
BD=BA
\(\widehat{DBE}\) chung
Do đó: ΔBDE=ΔBAC
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
góc ABM=góc DBM
Do đó: ΔBAM=ΔBDM
=>BA=BD
b: XétΔABC vuông tại A và ΔDBE vuông tại D có
BA=BD
góc ABC chung
Do đo: ΔABC=ΔDBE
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
b: ΔBAM=ΔBDM
=>BA=BD và MA=MD
Xét ΔMAE vuông tại A và ΔMDC vuông tại D có
MA=MD
\(\widehat{AME}=\widehat{DMC}\)
Do đó: ΔMAE=ΔMDC
=>ME=MC
c: ΔMAE=ΔMDC
=>AE=DC
BA+AE=BE
BD+DC=BC
mà BA=BD
và AE=DC
nên BE=BC
Xét ΔABC vuông tại A và ΔDBE vuông tại D có
BC=BE
BA=BD
Do đó: ΔABC=ΔDBE
Ta có: BE=BC
=>B nằm trên đường trung trực của EC(1)
Ta có: ME=MC
=>M nằm trên đường trung trực của EC(2)
Xét ΔBEC có BE=BC
nên ΔBEC cân tại B
Ta có: ΔBEC cân tại B
mà BH là đường cao
nên BH là trung trực của EC(3)
Từ (1),(2),(3) suy ra B,M,H thẳng hàng