K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

Mình theo một số nguồn trên Internet thì đề đúng là : \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}.\)

Ta có :

\(a^2+b^2+c^2-2bc-2ca+2ab\)

\(=\left(a+b-c\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2-2bc-2ca+2ab\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge2bc+2ca-2ab\)

Dấu bằng xảy ra khi \(a+b=c\)

Mà \(\frac{5}{3}< \frac{6}{3}=2\)

\(\Rightarrow a^2+b^2+c^2< 2\)

\(\Rightarrow2bc+2ac-2ab\le a^2+b^2+c^2< 2\)

\(\Rightarrow2bc+2ac-2ab< 2\)

Do a ; b ; c > 0

\(\Rightarrow\frac{2bc+2ac-2ab}{2abc}< \frac{2}{2abc}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

Vậy ...

6 tháng 6 2017

xời làm hoài Câu hỏi của LIVERPOOL - Toán lớp 9 - Học toán với OnlineMath

10 tháng 8 2018

\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3\left(a+b\right)}\)

\(=\dfrac{abc}{a^3\left(b+c\right)}+\dfrac{abc}{b^3\left(a+c\right)}+\dfrac{abc}{c^3\left(a+b\right)}\)

\(=\dfrac{bc}{a^2\left(b+c\right)}+\dfrac{ac}{b^2\left(a+c\right)}+\dfrac{ab}{c^2\left(a+b\right)}\)

\(=\dfrac{b^2c^2}{a^2bc\left(b+c\right)}+\dfrac{a^2c^2}{ab^2c\left(a+c\right)}+\dfrac{a^2b^2}{abc^2\left(a+b\right)}\)

\(Cauchy-Schwarz:\)

\(VT\ge\dfrac{\left(bc+ac+ab\right)^2}{abc\left[a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)\right]}\)

\(=\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\)

\(AM-GM:\)

\(ab+bc+ca\ge\sqrt[3]{\left(abc\right)^2}=3\)

\(\Rightarrow VT\ge\dfrac{ab+bc+ca}{2}\ge\dfrac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Lời giải khác:

Áp dụng BĐT AM-GM:

\(\frac{1}{a^3(b+c)}+\frac{a(b+c)}{4}\geq 2\sqrt{\frac{1}{4a^2}}=\frac{1}{a}=\frac{abc}{a}=bc\)

\(\frac{1}{b^3(a+c)}+\frac{b(a+c)}{4}\geq 2\sqrt{\frac{1}{4b^2}}=\frac{1}{b}=\frac{abc}{b}=ac\)

\(\frac{1}{c^3(a+b)}+\frac{c(a+b)}{4}\geq 2\sqrt{\frac{1}{4c^2}}=\frac{1}{c}=\frac{abc}{c}=ab\)

Cộng theo vế và rút gọn:

\(\Rightarrow \frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}+\frac{ab+bc+ac}{2}\ge ab+bc+ac\)

\(\Rightarrow \frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}\geq \frac{ab+bc+ac}{2}\geq \frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\) (AM_GM)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

27 tháng 8 2017

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

6 tháng 8 2016

\(a^2+b^2-c^2=a^2+b^2-\left(-a-b\right)^2=-2ab\)

\(VT=-\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=-\frac{1}{2}.\frac{a+b+c}{abc}=0\)

NV
19 tháng 6 2019

a/ BĐT sai, cho \(a=b=c=2\) là thấy

b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương

\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)

\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
23 tháng 6 2019

Ta có:

\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)

Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)

\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)

NV
14 tháng 9 2021

\(\dfrac{a^3}{1+b}+\dfrac{1+b}{4}+\dfrac{1}{2}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)}{8\left(a+b\right)}}=\dfrac{3a}{2}\)

\(\dfrac{b^3}{1+c}+\dfrac{1+c}{4}+\dfrac{1}{2}\ge\dfrac{3b}{2}\) ; \(\dfrac{c^3}{1+a}+\dfrac{1+a}{4}+\dfrac{1}{2}\ge\dfrac{3c}{2}\)

\(\Rightarrow VT+\dfrac{a+b+c}{4}+\dfrac{9}{4}\ge\dfrac{3}{2}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{5}{4}\left(a+b+c\right)-\dfrac{9}{4}\ge\dfrac{5}{4}.3\sqrt[3]{abc}-\dfrac{9}{4}=\dfrac{3}{2}\)