K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2016

Cho a+b+c=0 và a^2+b^2+c^2=14.Tính P=a^4+b^4+c^4

5 tháng 7 2016

(a+b+c)^2=0=>a^2+b^2+c^2+2(ab+bc+ac)=0=>2(ab+bc+ac)=-14=>(ab+ac+bc)^2=49                                                                        phân tích (ab+ac+cb)^2 ta được (ab)^2+(bc)^2+(ac)^2=49                                                                                                              đặt N=  a^2+b^2+c^2=14=>   N^2=196                                                                                                                                           phân tích N^2 rồi thế (ab)^2+(bc)^2+(ac)^2=49 vào N^2 sẽ có kết quả của a^4+b^4+c^4

                           

5 tháng 7 2016

 a+b+c=0 => a^2+b^2+c^2+2ab+2bc+2ca = 0 => a^2+b^2+c^2=0
=> a^2+b^2+c^2 = ab+bc+ca
=> 2a^2+2b^2+2c^2 = 2ab+2bc+2ca
=> (a-b)^2 + (b-c)^2 + (c-a)^2 = 0
=> a=b=c, mà a+b+c=0 => a=b=c=0

thay vào

M=(0-2016)2016+(0-2016)2016-(0-2016)2016=(-2016)2016=20162016

Chúc bạn hoc tốt ùng hộ nha

1 tháng 12 2016

\(A=\frac{2016a}{ab+2016a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}\)

\(A=\frac{2016a}{ab+2016a+abc}+\frac{b}{bc+b+2016}+\frac{bc}{abc+bc+b}\)

\(A=\frac{2016a}{a\left(b+2016+bc\right)}+\frac{b}{bc+b+2016}+\frac{bc}{2016+bc+b}\)

\(A=\frac{2016}{b+2016+bc}+\frac{b}{bc+b+2016}+\frac{bc}{2016+bc+b}\)

\(A=\frac{2016+b+bc}{2016+b+bc}=1\)

1 tháng 12 2016

Thay : 2016 = abc

ta có :

\(A=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(A=\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)

\(A=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)

\(A=\frac{ac+c+1}{ac+c+1}\)

\(A=1\)

vậy \(A=\frac{2016.a}{ab+2016.a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}=1\)

Chúc bạn học tốt !

6 tháng 12 2017

Ta có: a3 + b3 + c3 = 3abc 

  \(\Leftrightarrow\)a3 + b3 + c3 - 3abc = 0

  \(\Leftrightarrow\)(a + b)3 + c3 - 3ab2 - 3a2b - 3abc = 0

  \(\Leftrightarrow\)(a + b + c)[(a + b)2 - c(a + b) + c2 ] - 3ab(a + b + c) = 0

  \(\Leftrightarrow\)(a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab) = 0

  \(\Leftrightarrow\)(a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 0

Vì a + b + c khác 0 nên

    a2 + b2 + c2 - ab - bc - ca = 0

\(\Leftrightarrow\)2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

\(\Leftrightarrow\)(a - b)2 + (b - c)2 + (c - a)2 = 0

\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)\(\Leftrightarrow\)a = b = c 

 N = \(\frac{a^{2016}+b^{2016}+c^{2016}}{\left(a+b+c\right)^{2016}}\)= 1

11 tháng 1 2016

Giúp tôi với !!

 

20 tháng 11 2023

Có:

\(a^3+b^3+c^3=3abc\\\Leftrightarrow a^3+b^3+c^3-3abc=0\\\Leftrightarrow (a+b)^3+c^3-3ab(a+b)-3abc=0\\\Leftrightarrow (a+b+c)^3-3(a+b)c(a+b+c)-3ab(a+b+c)=0\\\Leftrightarrow (a+b+c)[(a+b+c)^2-3(a+b)c-3ab]=0\\\Leftrightarrow (a+b+c)(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab)=0\\\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\\\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0(vì.a+b+c\ne0)\\\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0\\\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)=0\\\Leftrightarrow (a-b)^2+(b-c)^2+(a-c)^2=0\)

Ta thấy: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(a-c\right)^2\ge0\forall a,c\end{matrix}\right.\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)

Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

nên: \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow a=b=c\)

Thay \(a=b=c\) vào \(A\), ta được:

\(A=\dfrac{\left(2016+\dfrac{a}{a}\right)+\left(2016+\dfrac{b}{b}\right)+\left(2016+\dfrac{c}{c}\right)}{2017^3}\left(a,b,c\ne0\right)\)

\(=\dfrac{2016+1+2016+1+2016+1}{2017^3}\)

\(=\dfrac{2016\cdot3+1\cdot3}{2017^3}\)

\(=\dfrac{3\cdot\left(2016+1\right)}{2017^3}\)

\(=\dfrac{3}{2017^2}\)

Vậy: ...