K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

Câu hỏi của pé dễ thương cuồng tfboys - Toán lớp 8 - Học toán với OnlineMath

Tham khảo

25 tháng 4 2020

tham khao di

26 tháng 9 2017

Câu trả lời hay nhất: Do a+b+c=0 =>a+b= -c
Ta có (a+b)^5=c^5
<=>a^5+5a^4b+10a^3b^2+10a^2b^3 + 5ab^4 + b^5=-c^5
<=>a^5+b^5+c^5= -5ab(a^3+2a^2b+2ab^2+b^3)
<=>a^5+b^5+c^5= -5ab( a^2(a+b)+ab(a+b)+b^2(a+b))
<=>a^5+b^5+c^5= -5ab(-c)(a^2+ab+b^2) Vì a+b= -c
<=>2(a^5+b^5+c^5)=5abc2(a^2+ab+b^2)
<=>2(a^5+b^5+c^5)=5abc(a^2+b^2+(a+b)^2)
<=>2(a^5+b^5+c^5)=5abc(a^2+b^2+(-c)^2)
<=>2(a^5+b^5+c^5)=5abc(a^2+b^2+c^2) (đpcm)

13 tháng 10 2018

Câu hỏi của Ngô Đức Duy - Toán lớp 8 - Học toán với OnlineMath tham khảo

14 tháng 10 2018

\(a+b+c=0\Rightarrow a+b=-c\)      

\(\Rightarrow\left(a+b\right)^5=-c^5\)

\(\Rightarrow a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5=-c^5\)      

\(\Rightarrow a^5+b^5+c^5+5ab\left[a^3+2a^2b+2ab^2+b^3\right]=0\)

\(\Rightarrow a^5+b^5+c^5+5ab\left[\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)\right]=0\)

\(\Rightarrow a^5+b^5+c^5+5ab\left(a+b\right)\left(a^2+ab+b^2\right)=0\)

\(\Rightarrow2\left(a^5+b^5+c^5\right)+5ab\left(-c\right)\left[2a^2+2ab+2b^2\right]=0\)

\(\Rightarrow2\left(a^5+b^5+c^5\right)-5abc\left[\left(a^2+2ab+b^2\right)+a^2+b^2\right]=0\)

\(\Rightarrow2\left(a^5+b^5+c^5\right)-5abc\left[a^2+b^2+c^2\right]=0\)

\(\Rightarrow2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)

Chúc bạn học tốt.

3 tháng 1 2019

Câu hỏi của Ngô Đức Duy - Toán lớp 8 - Học toán với OnlineMath ...

10 tháng 8 2018

a,Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath

b,Câu hỏi của Ngô Đức Duy - Toán lớp 8 - Học toán với OnlineMath

c,Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath

\(\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(c+a-b\right)^2+\left(a+b-c\right)^2\)

\(=4a^2+4b^2+4c^2\)

\(=4\left(a^2+b^2+c^2\right)\)

Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=4a^2+4b^2+4c^2-4ab-4bc-4ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=4a^2+4b^2+4c^2-4ab-4ac-4bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac-4a^2-4b^2-4c^2+4ab+4bc+4ac=0\)

\(\Leftrightarrow-2a^2-2b^2-2c^2+2ab+2ac+2bc=0\)

\(\Leftrightarrow-\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)(đpcm)

23 tháng 7 2019

a. \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)

\(\Leftrightarrow2a^2+2b^2=a^2+b^2-2ab\)

\(\Leftrightarrow a^2+b^2=-2ab\)

\(\Leftrightarrow a^2+2ab+b^2=0\)

\(\Leftrightarrow\left(a+b\right)^2=0\)

\(\Leftrightarrow a+b=0\Leftrightarrow a=-b\) (đpcm)

b. \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

\(\left(a-1\right)^2;\left(b-1\right)^2;\left(c-1\right)^2\ge0\)

\(\Rightarrow\left(a-1\right)^2=\left(b-1\right)^2=\left(c-1\right)^2=0\)

\(\Leftrightarrow a-1=b-1=c-1=0\Leftrightarrow a=b=c=1\)

c. \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tương tự câu b ta có a = b = c