Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{ab}{\sqrt{2017c+ab}}=\frac{ab}{\sqrt{\left(a+b+c\right)c+ab}}\)
\(=\frac{ab}{\sqrt{a\left(b+c\right)+c\left(b+c\right)}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
Áp dụng BĐT AM-GM (cô si): \(ab.\frac{1}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{ab}{2}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{ab}{2\left(a+c\right)}+\frac{ab}{2\left(b+c\right)}\)
Tương tự với hai BĐT còn lại và cộng theo vế,ta được:
\(A\le\frac{ab}{2\left(a+c\right)}+\frac{ab}{2\left(b+c\right)}+\frac{bc}{2\left(a+b\right)}+\frac{bc}{2\left(a+c\right)}+\frac{ca}{2\left(b+c\right)}+\frac{ca}{2\left(a+b\right)}\)
Thu gọn lại bằng cách cộng những phân thức cùng mẫu và rút gọn phân thức,ta được:
\(A\le\frac{a+b+c}{2}=\frac{2017}{2}\).
Dấu "=" xảy ra khi \(a=b=c=\frac{2017}{3}\)
Vậy...
Ta có \(c+ab=\left(a+b+c\right)c+ab=ab+bc+c^2-ab=\left(a+c\right)\left(b+c\right)\)
Tương tự có \(a+bc=\left(b+a\right)\left(c+a\right)\)
\(b+ca=\left(b+c\right)\left(a+b\right)\)
Khi đó : \(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(b+a\right)\left(c+a\right)}}+\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}\)
Áp dụng BĐT AM-GM ta có
\(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)
\(\sqrt{\frac{bc}{\left(b+a\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{c}{c+a}\right)\)
\(\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{a+b}\right)\)
Cộng theo vế các bất đẳng thức cùng chiều
\(P\le\frac{1}{2}\left(\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{b+a}{b+a}\right)=\frac{3}{2}\)
Vậy \(Max_P=\frac{3}{2}\)khi \(a=b=c=\frac{1}{3}\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Ta có:
\(P=\frac{ab}{\sqrt{c+ab}}+\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}\)
\(=\frac{ab}{\sqrt{1-a-b+ab}}+\frac{bc}{\sqrt{1-b-c+bc}}+\frac{ca}{\sqrt{1-a-c+ca}}\)
\(=\frac{ab}{\sqrt{\left(1-a\right)\left(1-b\right)}}+\frac{bc}{\sqrt{\left(1-b\right)\left(1-c\right)}}+\frac{ca}{\sqrt{\left(1-c\right)\left(1-a\right)}}\)
\(\le\frac{a^2}{2\left(1-a\right)}+\frac{b^2}{2\left(1-b\right)}+\frac{b^2}{2\left(1-b\right)}+\frac{c^2}{2\left(1-c\right)}+\frac{c^2}{2\left(1-c\right)}+\frac{a^2}{2\left(1-a\right)}\)
\(=-\left(\frac{a^2}{a-1}+\frac{b^2}{b-1}+\frac{c^2}{c-1}\right)\)
\(\le-\frac{\left(a+b+c\right)^2}{a+b+c-3}=\frac{1}{3-1}=\frac{1}{2}\)
Vậy GTLN là \(P=\frac{1}{2}\) khi \(a=b=c=\frac{1}{3}\)
Biến đổi một chút, ta có:\(\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{a\left(a+b+c\right)+bc}}\)
\(=\sqrt{\frac{bc}{a+bc}}\cdot\sqrt{\frac{bc}{c+a}}\le\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)\)
Tương tự cho 2 BĐT còn lại ta có:
\(\frac{ca}{\sqrt{b+ca}}\le\frac{1}{2}\left(\frac{ca}{a+b}+\frac{ca}{b+c}\right);\frac{ab}{\sqrt{c+ab}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{a+b}\right)\)
Cộng ba bất đẳng thức trên lại theo vế, ta có:
\(\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}+\frac{ab}{\sqrt{c+ab}}\le\frac{1}{2}\left(a+b+c\right)=\frac{1}{2}\)
Ta có \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)
=> \(\frac{1}{\sqrt{a^2-ab+b^2}}\le\frac{1}{\frac{1}{2}\left(a+b\right)}=\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Chứng minh tương tự, rồi cộng lại, ta có
A\(\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
dấu = xảy ra <=> a=b=c=1
^_^
Ta có : \(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{bc+a.abc}}=\frac{a}{\sqrt{bc+a\left(a+b+c\right)}}\)
\(=\frac{a}{\sqrt{bc+a^2+ab+ac}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng bđt Cô-si ngược ta có
\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
C/m tương tự được \(\frac{b}{\sqrt{ca\left(1+b^2\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)
\(\frac{c}{\sqrt{ab\left(1+c^2\right)}}\le\frac{1}{2}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)
Cộng 3 vế của các bđt trên lại ta được
\(A\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{a}{a+c}+\frac{c}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)\)
\(=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b+c=abc\\a=b=c\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=a^3\\a=b=c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^3-3a=0\\a=b=c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a\left(a^2-3\right)=0\\a=b=c\end{cases}}\)
\(\Leftrightarrow a=b=c=\sqrt{3}\left(a,b,c>0\right)\)
Vậy \(A_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\sqrt{3}\)
Ta có \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{\left(c+b\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{a+b}\right)\)
Khi đó \(P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\frac{1}{2}\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+c}+\frac{c}{b+c}\right)=\frac{3}{2}\)
\(MaxP=\frac{3}{2}\)khi a=b=c=1/3