K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

với x+y+z=0 thì \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0< =>\)x3 +y3 +z3 =3xyz

nếu đặt x=a2; y=b2 ;z=c2 thì ta cần có a2 +b2 +c2 =0 thì sẽ có a6 +b6 +c6 =3a2b2c2

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0< =>\frac{ab+bc+ca}{abc}=0< =>ab+bc+ca=0.\)

a+b+c=0 <=> (a+b+c)2 =0 <=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0< =>a^2+b^2+c^2=0.\)(chứng minh xong)

AH
Akai Haruma
Giáo viên
4 tháng 8 2017

Lời giải:

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ac=0\)

\(\Rightarrow 0=(ab+bc+ac)^2=a^2b^2+b^2c^2+c^2a^2+2abc(a+b+c)\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=0\)

Hiển nhiên \(a^2b^2,b^2c^2,c^2a^2\geq 0\rightarrow a^2b^2+b^2c^2+c^2a^2\geq 0\)

Dấu bằng xảy ra khi \(ab=bc=ac=0\)

Vì vậy, không thể có TH \(a,b,c\neq 0\), do đó đề bài sai.

21 tháng 10 2019

Đề sai nhé bạn . a=b=c=0 thì phân số 1/a không có nghĩa!

16 tháng 2 2022

2.3+3.(-1,2)+(-1,2).2=0 (a=2, b=3, c=-1,2)

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{19}{18}\)

\(\dfrac{3}{abc}=-\dfrac{5}{12}\)?