K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

b)Ta có: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge a+b+c\left(1\right)\)

\(\Leftrightarrow\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^4+b^4+c^4}{abc}\ge a+b+c\)

\(\Leftrightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta xét BĐT phụ: \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

Cộng các BĐT phụ vừa chứng minh:

\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)

Áp dụng vào bài, ta có:

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng lần nữa:

\(a^2b^2+b^2c^2+c^2a^2\ge ab^2c+bc^2a+a^2bc=abc\left(a+b+c\right)\)

Vậy ta suy ra được điều phải chứng minh

2 tháng 8 2017

a) Đặt vế trái BĐT là P

\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right)8.8}}=\dfrac{3a}{4}\)

Tương tự: \(\dfrac{b^3}{\left(1+a\right)\left(1+c\right)}+\dfrac{1+a}{8}+\dfrac{1+c}{8}\ge\dfrac{3b}{4}\)

\(\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{1+a}{8}+\dfrac{1+b}{8}\ge\dfrac{3c}{4}\)

Cộng vế theo vế các BĐT vừa chứng minh

\(P+\dfrac{6+2a+2b+2c}{8}\ge\dfrac{3a+3b+3c}{4}\)

\(P\ge\dfrac{3a+3b+3c}{4}-\dfrac{2\left(3+a+b+c\right)}{8}=\dfrac{3a+3b+3c-a-b-c-3}{4}=\dfrac{2\left(a+b+c\right)-3}{4}\)

\(a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow P\ge\dfrac{2.3-3}{4}=\dfrac{3}{4}\)

22 tháng 1 2021

Các bạn trả lời tích cực nhé giáo viên Toán của Hoc24 sẽ nhận xét và cộng GP cho các em ^^

NV
20 tháng 6 2020

\(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}=\frac{a^2+b^2+2a+6}{ab+a+4}\ge\frac{2ab+2a+6}{ab+a+4}=2-\frac{2}{ab+a+1+3}\ge2-\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{3}\right)\)

Tương tự: \(\frac{\left(1+b\right)^2+c^2+5}{bc+b+4}\ge2-\frac{1}{2}\left(\frac{1}{bc+b+1}+\frac{1}{3}\right)\) ; \(\frac{\left(1+c\right)^2+c^2+5}{ac+c+4}\ge2-\frac{1}{2}\left(\frac{1}{ac+c+1}+\frac{1}{3}\right)\)

Cộng vế với vế:

\(P\ge\frac{11}{2}-\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)=\frac{11}{2}-\frac{1}{2}=5\)

\(P_{min}=5\) khi \(a=b=c=1\)

22 tháng 5 2017

Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b^2-ab^3+b^4\right)\)

\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)\left(a^3-b^3\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\)

\(\ge\left(a+b\right)^2a^2b^2\forall a,b>0\)

\(\Rightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)

\(\Rightarrow\dfrac{ab}{a^5+b^5+ab}\le\dfrac{ab}{ab\left[ab\left(a+b\right)+1\right]}=\dfrac{1}{ab\left(a+b\right)+1}=\dfrac{c}{a+b+c}\left(abc=1\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{bc}{b^5+c^5+bc}\le\dfrac{a}{a+b+c};\dfrac{ca}{c^5+a^5+ca}\le\dfrac{b}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(P\le\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

Đẳng thức xảy ra khi \(a=b=c=1\)

24 tháng 5 2017

cảm ơn nhiều

NV
25 tháng 12 2020

\(a^5+b^2+ab+6\ge3a^2b+6\)

\(\Rightarrow P\le\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{\sqrt{a^2b+2}}+\dfrac{1}{\sqrt{b^2c+2}}+\dfrac{1}{\sqrt{c^2a+2}}\right)\le\sqrt{\dfrac{1}{a^2b+2}+\dfrac{1}{b^2c+2}+\dfrac{1}{c^2a+2}}=\sqrt{Q}\)

\(Q=\dfrac{c}{a+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}=\dfrac{1}{2}\left(1-\dfrac{a}{a+2c}+1-\dfrac{b}{b+2a}+1-\dfrac{c}{c+2b}\right)\)

\(Q=\dfrac{3}{2}-\dfrac{1}{2}\left(\dfrac{a^2}{a^2+2ac}+\dfrac{b^2}{b^2+2ab}+\dfrac{c^2}{c^2+2bc}\right)\)

\(Q\le\dfrac{3}{2}-\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)

\(\Rightarrow P\le\sqrt{1}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

19 tháng 11 2018

1) Áp dụng bđt Cauchy:

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge2\sqrt{\dfrac{1}{a^2b^2}}=\dfrac{2}{ab}\)

Xong