Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+3c+a+2b=8+9
=>2a+2b+3c=17
=>2(a+b+c)+c=17
vì a+b+c lớn nhất=>2(a+b+c) lớn nhất
=>c nhỏ nhất không âm
=>c=0
=>a=8
b=1/2
vậy a=8;b=1/2;c=0
a+3c+a+2b=8+9
=>2a+2b+3c=17
=>2﴾a+b+c﴿+c=17
vì a+b+c lớn nhất
=>2﴾a+b+c﴿ lớn nhất
=>c nhỏ nhất không âm
=>c=0 =>a=8 b=1/2
vậy a=8;b=1/2;c=0
Ta có:a+3c=8 (1)
a+2b=9 (2)
Cộng từng vế (1);(2)
=>a+3c+a+2b=8+9
=>2a+2b+3c=17
=>2a+2b+2c+c=17
=>2(a+b+c)+c=17
a+b+c lớn nhất<=>c nhỏ nhất ,mà c\(\ge\) 0(do c ko âm)
=>c=0
Thay c=0 vào ta có:
+)a+3c=8=>a=8
+)a+2b=9=>8+2b=9=>2b=1=>b=1/2
Vậy GTLN của a+b+c=9+1/2+0=8,5
Ta có:a+3c=8 (1)
a+2b=9 (2)
Cộng từng vế (1);(2)
=>a+3c+a+2b=8+9
=>2a+2b+3c=17
=>2a+2b+2c+c=17
=>2(a+b+c)+c=17
a+b+c lớn nhất<=>c nhỏ nhất ,mà c≥ 0(do c ko âm)
=>c=0
Thay c=0 vào ta có:
+)a+3c=8=>a=8
+)a+2b=9=>8+2b=9=>2b=1=>b=1/2
Vậy GTLN của a+b+c=9+1/2+0=8,5
Ta có:
a+2c+a+3b=8+9
=> 2a+3b+2c=17
=> 2(a+b+c)+c=17
Vì a+b+c lớn nhất=> 2(a+b+c) lớn nhất
=> c nhỏ nhất không âm.
=> a=8
b=1/2
c= 0
Vậy a=8
Ta có:
a+2b+a+3c=8+9
=> 2a+3c+2b=17
=> 2(a+b+c)+c=17
Vì a+b+c lớn nhất=> 2(a+b+c) lớn nhất
=> c nhỏ nhất không âm.
=> a=8
b=1/2
c= 0
Vậy a=8
Gồm 2 cách:
Cách 1: Theo bài ra ta có:
\(a+3c=8\) và \(a+2b=9\)
\(\Longrightarrow 2a + 2b +3c = 17 \)
\(\Longrightarrow 2a+2b+2c = 17 - c \leq 17\) ( vì \(c \ge 0\))
Mà \(a+b+c\) có giá trị lớn nhất
\(\Longrightarrow c=0\)
\(\Longrightarrow a = 8 \)
\(\Longrightarrow b = \dfrac{9 - 8}{2} = \dfrac{1}{2}\)
Cách 2: Từ gt ta có \(c = \dfrac{8-a}3\) và \(b = \dfrac{9-a}2\)
Khi đó \(a + b + c = a + \dfrac{9-a}2 + \dfrac{8-a}3 = \dfrac{6a + (9-a)\cdot 3 + (8-a) \cdot 2}6 = \dfrac{a + 43}6\)
Do \(a+b+c \) có GTLN nên \( \dfrac{a+43}6\)có GTLN, suy ra \(a\) phải có GTLN
Mà do \( a, b,c \geqslant 0\) nên từ gt ta cũng có: \(a = 8 - 3c \leqslant 8 \) và \(a = 9 - 2b \leqslant 9 \implies a \leqslant 8\)
Vậy \(a = 8\), khi đó thay vào gt ta tính được \(c = 0 \) và \(b = \dfrac12\)