Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì A chia hết cho 2; 5 nên b = 0. Vì A chia hết cho 3; 9 nên a = 6.
b) Tương tự câu a) ta tìm được b = 0; a = 9
c) Vì C chia hết cho 45 nên C chia hết cho 5; 9.
Từ đó ta tính được (b = 0; a = 3); (b = 5; a = 7).
d) Vì D chia hết cho 5 và 18 nên C chia hết cho 5; 2; 9. Từ đó ta tìm được b = 0; a = 7.
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
a) Vì A chia hết cho 2; 5 nên b = 0. Vì A chia hết cho 3; 9 nên a = 6.
b) Tương tự câu a) ta tìm được b = 0; a = 9
c) Vì C chia hết cho 45 nên C chia hết cho 5; 9.
Từ đó ta tính được (b = 0; a = 3); (b = 5; a = 7).
d) Vì D chia hết cho 5 và 18 nên C chia hết cho 5; 2; 9. Từ đó ta tìm được
b = 0; a = 7.
a) \(n^2+1⋮n-1\Leftrightarrow n^2-1+2⋮n-1\)
\(\Leftrightarrow\left(n-1\right)\left(n+1\right)+2⋮n-1\Leftrightarrow2⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(2\right)=\left\{1;2\right\}\Leftrightarrow n\in\left\{2;3\right\}.\)
b) \(20⋮n\Leftrightarrow n\inƯ\left(20\right)=\left\{1;2;4;5;10;20\right\}.\)
c)\(28⋮n-1\Leftrightarrow n-1\inƯ\left(28\right)=\left\{1;2;4;7;14;28\right\}\Leftrightarrow n\in\left\{2;3;5;8;15;29\right\}.\)
2,
a) \(H=3^2+3.17+34.3^3⋮3;H>3\)=> H có nhiều hơn 2 ước => Tổng H là hợp số.
b) \(I=7+7^2+7^3+7^4+7^5⋮7;I>7\)=> H có nhiều hơn 2 ước => Tổng I là hợp số.
c) Ta dễ dàng thấy A có nhiều hơn 2 ước => A là hợp số.
d) \(B=147.247.347-13=147.13.19.347-13⋮13;B>13\)=> B có nhiều hơn 2 ước => B là hợp số.
1 b) 20 \(⋮\)n
=> n \(\in\)Ư(20)
=> n \(\in\left\{\pm1;\pm2;\pm4\pm5;\pm10;\pm20\right\}\)
c) 28 \(⋮\)n - 1
=> n - 1 \(\in\)Ư(28)
=> n - 1 \(\in\left\{\pm1\pm2\pm4\pm7\pm14\pm28\right\}\)
Lập bảng xét 12 trường hợp
n - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 7 | -7 | 14 | -14 | 28 | -28 |
n | 2 | 0 | 3 | -1 | 5 | -3 | 8 | -6 | 15 | -13 | 29 | -27 |
=> n \(\in\){2;0;3;-1;5;-3;8;-6;15;-13;29;-27}
2 a) H = 32 + 3.17 + 34.33
= 3.3 + 3.17 + 34.32.3
= 3.(3 + 17 + 34.32) \(⋮\)3
=> H là hợp số
b) I = 7 + 72 + 73 + 74 + 75
= 7 + 7.7 + 7.72 + 7.73 + 7.74
= 7.(1 + 7 + 72 + 73 + 74) \(⋮\)7
=> I là hợp số
c) A = 1.3.5.7....13.20
= 5.(1.3.7...13.20) \(⋮\)5
=> A là hợp số
B = 147.247.347 - 13
= 147.13.19.347 - 13
= 13.(147.19.347 - 1) \(⋮\)13
=> B là hợp số
Bài 1 :
a)
Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9
Suy ra: (a + b) ∈ {3; 12}
Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12
Thay a = 4 + b vào a + b = 12, ta có:
b + (4 + b) = 12 ⇔ 2b = 12 – 4
⇔ 2b = 8 ⇔ b = 4
a = 4 + b = 4 + 4 = 8
Vậy ta có số: 8784.
b)
⇒ (7+a+5+b+1) chia hết cho 3
⇔ (13+a+b) chia hết cho 3
+ Vì a, b là chữ số, mà a-b=4
⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).
Thay vào biểu thức 7a5b1, ta được :
ĐA 1: a=9; b=5.
ĐA 2: a=6; b=2.
Bài 2 :
a)Để 54* chia hết cho cả 2 và 5 =>* thuộc{0}
b)Để *54 chia hết cho 2=>* thuộc N
c)Để 54* chia hết cho 3 =>5+4+* chia hết cho 3
=>9+* chia hết cho 3
=>* thuộc{0;3;6;9}
d)Để 5* là số nguyên tố=>* thuộc {3;9}
Xét : a^5-a = a.(a^4-1) = a.(a^2-1).(a^2+1) = (a-1).a.(a+1).(a^2-4+5)
= (a-2).(a-1).a.(a+1).(a+2)+5.(a-1).a.(a+1)
Ta thấy a-2;a-1;a;a+1;a+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 ; 1 số khác chia hết cho 4 ; 1 số chia hết cho 5
=> (a-2).(a-1).a.(a+1).(a+2) chia hết cho 2.4.5 = 40 (1)
Lại có : p là số nguyên tố > 2 => p lẻ => p = 2k+1 ( k thuộc N sao )
=> (p-1).(p+1) = 2k.(2k+2) = 4.k.(k+1)
Vì k;k+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2
=> (p-1).(p+1) chia hết cho 8
=> 5.(p-1).p.(p+1) chia hết cho 5.8=40 (2)
Từ (1) và (2) => a^5-a chia hết cho 40
Tương tự : b^5-b ; c^5-c ; d^5-d đều chia hết cho 40
=> (a^5+b^5+c^5+d^5)-(a+b+c+d) chia hết cho 40
Mà a^5+b^5+c^5+d^5 chia hết cho 40 => a+b+c+d chia hết cho 40
Tk mk nha