Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Ta có \(a^3+b^3\ge ab\left(a+b\right)\)
Thật vậy, BĐT tương đương:
\(a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b\)
2/ \(P=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{ad+bd}\ge\frac{\left(a+b+c+d\right)^2}{2ac+2bd+ab+bc+cd+ad}\)
\(P\ge\frac{\left(a+c\right)^2+\left(b+d\right)^2+2\left(a+c\right)\left(b+d\right)}{2ac+2bd+ab+bc+cd+ad}\)
\(P\ge\frac{4ac+4bd+2ab+2bc+2cd+2ad}{2ac+2bd+ab+bc+cd+ad}=2\)
Dấu "=" xảy ra khi \(a=b=c=d\)
Đơn giản là Cauhy-Schwarz thôi mà
Từ dòng 1 xuống dòng 2 thì khai triển hẳng đẳng thức ở tử số \(\left(x+y\right)^2=x^2+y^2+2xy\) với \(x=a+c\) và \(y=b+d\)
Áp dụng bất đẳng thức bu nhi a ta có
\(\left(a^3+b^3+c^3+d^3\right)^2\le\left(a^4+b^4+c^4+d^4\right)\left(a^2+b^2+c^2+d^2\right)\)
=> \(\frac{a^4+b^4+c^4+d^4}{a^3+b^3+c^3+d^3}\ge\frac{a^3+b^3+c^3+d^3}{a^2+b^2+c^2+d^2}\)
tương tự ta có
\(\frac{a^3+b^3+c^3+d^3}{a^2+b^2+c^2+d^2}\ge\frac{a^2+b^2+c^2+d^2}{a+b+c+d}\)
mà \(\left(a+b+c+d\right)^2\le\left(a^2+b^2+c^2+d^2\right)\left(1+1+1+1\right)\Rightarrow a^2+b^2+c^2+d^2\ge1\)
từ đó ta có
\(\frac{a^4+b^4+c^4+d^4}{a^3+b^3+c^3+d^3}\ge\frac{1}{2}\)
dấu = xảy ra <=> \(a=b=c=d=\frac{1}{2}\)
Áp dụng Côsi:
\(a^4+a^4+a^4+1\ge4\sqrt[4]{\left(a^4\right)^3}=4a^3\)
\(\Rightarrow3\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^3+b^3+c^3+d^3\right)-1\)
Ta chứng minh: \(a^3+b^3+c^3+d^3\ge4\)
Theo Côsi: \(a^3+1+1\ge3\sqrt[3]{a^3}=3a\)
\(\Rightarrow a^3+b^3+c^3+d^3+2.4\ge3\left(a+b+c+d\right)=3.4\)
\(\Rightarrow a^3+b^3+c^3+d^3\ge4\)
\(\Rightarrow3\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^3+b^3+c^3+d^3\right)-4\ge3\left(a^3+b^3+c^3+d^3\right)\)
\(\Rightarrow a^4+b^4+c^4+d^4\ge a^3+b^3+c^3+d^3\)
I don't now
...............
.................
.