K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2015

Trả lời nhanh lên, lâu quá đó!

NV
11 tháng 11 2019

1/ Ta có \(a^3+b^3\ge ab\left(a+b\right)\)

Thật vậy, BĐT tương đương:

\(a^3-a^2b+b^3-ab^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

Dấu "=" xảy ra khi \(a=b\)

2/ \(P=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{ad+bd}\ge\frac{\left(a+b+c+d\right)^2}{2ac+2bd+ab+bc+cd+ad}\)

\(P\ge\frac{\left(a+c\right)^2+\left(b+d\right)^2+2\left(a+c\right)\left(b+d\right)}{2ac+2bd+ab+bc+cd+ad}\)

\(P\ge\frac{4ac+4bd+2ab+2bc+2cd+2ad}{2ac+2bd+ab+bc+cd+ad}=2\)

Dấu "=" xảy ra khi \(a=b=c=d\)

NV
11 tháng 11 2019

Đơn giản là Cauhy-Schwarz thôi mà

Từ dòng 1 xuống dòng 2 thì khai triển hẳng đẳng thức ở tử số \(\left(x+y\right)^2=x^2+y^2+2xy\) với \(x=a+c\)\(y=b+d\)

19 tháng 9 2017

Áp dụng bất đẳng thức bu nhi a ta có 

\(\left(a^3+b^3+c^3+d^3\right)^2\le\left(a^4+b^4+c^4+d^4\right)\left(a^2+b^2+c^2+d^2\right)\)

=> \(\frac{a^4+b^4+c^4+d^4}{a^3+b^3+c^3+d^3}\ge\frac{a^3+b^3+c^3+d^3}{a^2+b^2+c^2+d^2}\)

tương tự ta có 

\(\frac{a^3+b^3+c^3+d^3}{a^2+b^2+c^2+d^2}\ge\frac{a^2+b^2+c^2+d^2}{a+b+c+d}\)

mà \(\left(a+b+c+d\right)^2\le\left(a^2+b^2+c^2+d^2\right)\left(1+1+1+1\right)\Rightarrow a^2+b^2+c^2+d^2\ge1\)

từ đó ta có 

\(\frac{a^4+b^4+c^4+d^4}{a^3+b^3+c^3+d^3}\ge\frac{1}{2}\)

dấu = xảy ra <=> \(a=b=c=d=\frac{1}{2}\)

19 tháng 9 2017

sai rồi bạn

7 tháng 8 2015

Áp dụng Côsi:

\(a^4+a^4+a^4+1\ge4\sqrt[4]{\left(a^4\right)^3}=4a^3\)

\(\Rightarrow3\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^3+b^3+c^3+d^3\right)-1\)

Ta chứng minh: \(a^3+b^3+c^3+d^3\ge4\)

Theo Côsi: \(a^3+1+1\ge3\sqrt[3]{a^3}=3a\)

\(\Rightarrow a^3+b^3+c^3+d^3+2.4\ge3\left(a+b+c+d\right)=3.4\)

\(\Rightarrow a^3+b^3+c^3+d^3\ge4\)

\(\Rightarrow3\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^3+b^3+c^3+d^3\right)-4\ge3\left(a^3+b^3+c^3+d^3\right)\)

\(\Rightarrow a^4+b^4+c^4+d^4\ge a^3+b^3+c^3+d^3\)