Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)
Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\); \(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)
Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)
\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*
\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)
\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)
Đẳng thức xảy ra khi a = b = c
P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:
1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)
\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)
bài 2 xem có ghi nhầm ko
\(=\left[\dfrac{a^6b^3}{c^3d^6}\cdot\dfrac{ac^4}{b^2d^3}\right]:\left[\dfrac{a^8b^8}{c^4d^{12}}\cdot\dfrac{c^3}{b^9d^3}\right]\)
\(=\dfrac{a^7b^3c^4}{c^3d^9b^2}:\dfrac{a^8}{bcd^{15}}\)
\(=\dfrac{a^7bc}{d^9}\cdot\dfrac{bcd^{15}}{a^8}=\dfrac{d^6\cdot b^2\cdot c^2}{a}\)
1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:
\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)
\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )
Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
ta có:
\(\frac{3}{a+b}+\frac{2}{c+d}+\frac{a+b}{\left(a+c\right)\left(b+d\right)}\ge\frac{3}{a+b}+\frac{2}{c+d}+\frac{4\left(a+b\right)}{\left(a+b+c+d\right)^2}\)
xét hiệu:
\(\frac{3}{a+b}+\frac{2}{c+d}+\frac{4\left(a+b\right)}{\left(a+b+c+d\right)^2}-\frac{12}{a+b+c+d}\)
\(=\frac{3}{a+b}+\frac{2}{c+d}-\frac{8\left(a+b\right)+12\left(c+d\right)}{\left(a+b+c+d\right)^2}\)
đặt a+b=x;c+d=y
\(\Rightarrow\frac{3}{a+b}+\frac{2}{c+d}-\frac{8\left(a+b\right)+12\left(c+d\right)}{\left(a+b+c+d\right)^2}=\frac{3}{x}+\frac{2}{y}-\frac{8x+12y}{\left(x+y\right)^2}\ge\frac{3}{x}+\frac{2}{y}-\frac{8x+12y}{4xy}=\frac{3}{x}+\frac{2}{y}-\frac{2}{y}-\frac{3}{x}=0\)
\(\Rightarrow\frac{3}{a+b}+\frac{2}{c+d}+\frac{4\left(a+b\right)}{\left(a+b+c+d\right)^2}\ge\frac{12}{a+b+c+d}\)
\(\Rightarrow\frac{3}{a+b}+\frac{2}{c+d}+\frac{a+b}{\left(a+c\right)\left(b+d\right)}\ge\frac{12}{a+b+c+d}\)
=>đpcm
dấu "=" xảy ra khi a=b=c=d
Ta có \(a+b+c+d=0\Leftrightarrow a+c=-\left(b+d\right)\Leftrightarrow\left(a+c\right)^3=\left[-\left(b+d\right)\right]^3\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-b^3-3b^2d-3bd^2-d^3\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2c-3ac^2-3b^2d-3bd^2\Leftrightarrow a^3+b^3+c^3+d^3=-3ac\left(a+c\right)-3bd\left(b+d\right)\Leftrightarrow a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)Vậy \(a+b+c+d=0\) thì \(a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)
ko biết
ta có
a+b+c+d=0
=> b+c=-(a+d) => (b+c)3=-(a+d)3
=> b3+c3+3bc(b+c)= -[a3+d3+3ad(a+d)]
=> a3+b3+c3+d3=-3ad(a+d)-3bc(b+c)= 3ad(b+c)-3bc(b+c)
=3(b+c)(ad-bc)