K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề sai kìa bạn 

Thử với giá trị nhỏ nhất :

\(\sqrt{5.0+4}+\sqrt{5.0+4}+\sqrt{5.0+4}=2+2+2+=6< 7\)

Chưa nhìn cũng biết câu 2 sai lun

28 tháng 5 2017

Quên, thiếu a+b+c=1

28 tháng 5 2017

Bài cuối:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^5+b^2+c^2\right)\left(\frac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\frac{1}{a^5+b^2+c^2}\le\frac{\frac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\). Tương tự có:

\(\frac{1}{b^5+a^2+c^2}\le\frac{\frac{1}{b}+a^2+c^2}{\left(a^2+b^2+c^2\right)^2};\frac{1}{c^5+a^2+b^2}\le\frac{\frac{1}{c}+a^2+b^2}{\left(a^2+b^2+c^2\right)^2}\)

Cộng theo vế 3 BĐT trên ta có: 

\(VT=Σ\frac{1}{a^5+b^2+c^2}\le\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+2\left(a^2+b^2+c^2\right)}{\left(a^2+b^2+c^2\right)^2}\)

Cần chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) ( đúng) 

Vậy ta có ĐPCM. Đẳng thức xảy ra khi \(a=b=c=1\)

28 tháng 5 2017

câu 1 mik nghĩ là nhỏ hơn hoặc = chứ nhỉ

11 tháng 11 2019

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

6 tháng 7 2020

Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:

Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)

khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)

Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)

Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$

\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)

\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)

11 tháng 4 2017

Ê t không phải cậu ta thì giải có được không?

11 tháng 4 2017

Ta có:

\(\left(\sqrt{\dfrac{a^3}{5a^2+\left(b+c\right)^2}}+\sqrt{\dfrac{b^3}{5b^2+\left(c+a\right)^2}}+\sqrt{\dfrac{c^3}{5c^2+\left(a+b\right)^2}}\right)^2\le\left(a+b+c\right)\left(\dfrac{a^2}{5a^2+\left(b+c\right)^2}+\dfrac{b^2}{5b^2+\left(c+a\right)^2}+\dfrac{c^2}{5c^2+\left(a+b\right)^2}\right)\left(1\right)\)

Giờ ta chứng minh:

\(P=\dfrac{a^2}{5a^2+\left(b+c\right)^2}+\dfrac{b^2}{5b^2+\left(c+a\right)^2}+\dfrac{c^2}{5c^2+\left(a+b\right)^2}\le\dfrac{1}{3}\)

Ta có:

\(\dfrac{a^2}{5a^2+\left(b+c\right)^2}\le\dfrac{a^2}{9}\left(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{2a^2+bc}+\dfrac{1}{2a^2+bc}\right)=\dfrac{1}{9}\left(\dfrac{a^2}{a^2+b^2+c^2}+\dfrac{2a^2}{2a^2+bc}\right)=\dfrac{1}{9}+\dfrac{1}{9}\left(\dfrac{a^2}{a^2+b^2+c^2}-\dfrac{bc}{2a^2+bc}\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}\dfrac{b^2}{5b^2+\left(c+a\right)^2}\le\dfrac{1}{9}+\dfrac{1}{9}\left(\dfrac{b^2}{a^2+b^2+c^2}-\dfrac{ca}{2b^2+ca}\right)\\\dfrac{c^2}{5c^2+\left(a+b\right)^2}\le\dfrac{1}{9}+\dfrac{1}{9}\left(\dfrac{c^2}{a^2+b^2+c^2}-\dfrac{ab}{2c^2+ab}\right)\end{matrix}\right.\)

Cộng vế theo vế ta được

\(P\le\dfrac{4}{9}-\dfrac{1}{9}\left(\dfrac{bc}{2a^2+bc}+\dfrac{ca}{2b^2+ca}+\dfrac{ab}{2c^2+ab}\right)\)

\(\le\dfrac{4}{9}-\dfrac{1}{9}.\dfrac{\left(ab+bc+ca\right)^2}{bc\left(2a^2+bc\right)+ca\left(2b^2+ca\right)+ab\left(2c^2+ab\right)}=\dfrac{4}{9}-\dfrac{1}{9}=\dfrac{1}{3}\left(2\right)\)

Từ (1) và (2) ta có

\(\sqrt{\dfrac{a^3}{5a^2+\left(b+c\right)^2}}+\sqrt{\dfrac{b^3}{5b^2+\left(c+a\right)^2}}+\sqrt{\dfrac{c^3}{5c^2+\left(a+b\right)^2}}^2\le\sqrt{\dfrac{a+b+c}{3}}\)

8 tháng 7 2019

Ta có: \(\hept{\begin{cases}a;b;c\ge0\\a+b+c=1\end{cases}}\Rightarrow0\le a;b;c\le1\Rightarrow\hept{\begin{cases}a^2\le a\\b^2\le b\\c^2\le c\end{cases}}\)

\(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)

\(=\sqrt{a+4a+4}+\sqrt{b+4b+4}+\sqrt{c+4c+4}\)

\(\ge\sqrt{a^2+4a+4}+\sqrt{b^2+4b+4}+\sqrt{c^2+4c+4}=a+2+b+2+c+2=7\)

\("="\Leftrightarrow a;b;c\) là hoán vị của 0;0;1

29 tháng 8 2019

TUYÊN TRUYỀN LOẠI CON TRẦN LÊ KIM MAI RA KHỎI OLM MỚI TUẦN TRC ĐIỂM NÓ LÀ 500 THÔI, NHG TUẦN NẦY NÓ LÊN TỚI GẦN 2000, ĐÃ LÊN NHG BỊ OLM TRỪ ĐIỂM DO SỰ TUYÊN TRUYỀN CỦA E Cảm ơn OLM đã trừ điểm con súc vật TRẦN LÊ KIM MAI ,link của nó https://olm.vn/thanhvien/kimmai123az, e rất ghi nhận sự tiến bộ về sự công bằng của olm.Nhưng vẫn còn nhìu cây mà con chó này copy nek, mong olm xét ạ https://olm.vn/hoi-dap/detail/228356929591.html////////https://olm.vn/hoi-dap/detail/228472453946.html/////https://olm.vn/hoi-dap/detail/228437567447.html//////////https://olm.vn/hoi-dap/detail/228435268921.html Vô trangh cá nhân của e sẽ thấy đc những câu trả lời \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"siêu hay\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\" của con chóhttps://olm.vn/thanhvien/kimmai123az Nó ms lớp 7 mà lamfg đc tón 9, nó tôi bt , là một người ko đàng hoàng , siêu nói tục của OLM, 1 ví dụ điển hình cho con cái nhà ko có giáo dục, nó chửi e là thèm cặc, lồn, bướm lồn, cave, các a chị vô trang cá nhân của e , vô thống kê hỏi đáp sẽ thấy nhg lời thô tục của nó. Em đăng ko để kiếm điểm nhg để vạch trần bộ mặt của con đó, e ko cần điêm làm j, nhg nếu mn thấy đúng thì k cx đc. E ko bốc phốt con chó ấy , đang chỉ ra nhg đứa dốt nát, đi copy bài

29 tháng 8 2019

TUYÊN TRUYỀN LOẠI CON TRẦN LÊ KIM MAI RA KHỎI OLM MỚI TUẦN TRC ĐIỂM NÓ LÀ 500 THÔI, NHG TUẦN NẦY NÓ LÊN TỚI GẦN 2000, ĐÃ LÊN NHG BỊ OLM TRỪ ĐIỂM DO SỰ TUYÊN TRUYỀN CỦA E Cảm ơn OLM đã trừ điểm con súc vật TRẦN LÊ KIM MAI ,link của nó https://olm.vn/thanhvien/kimmai123az, e rất ghi nhận sự tiến bộ về sự công bằng của olm.Nhưng vẫn còn nhìu cây mà con chó này copy nek, mong olm xét ạ https://olm.vn/hoi-dap/detail/228356929591.html////////https://olm.vn/hoi-dap/detail/228472453946.html/////https://olm.vn/hoi-dap/detail/228437567447.html//////////https://olm.vn/hoi-dap/detail/228435268921.html Vô trangh cá nhân của e sẽ thấy đc những câu trả lời \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"siêu hay\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\" của con chóhttps://olm.vn/thanhvien/kimmai123az Nó ms lớp 7 mà lamfg đc tón 9, nó tôi bt , là một người ko đàng hoàng , siêu nói tục của OLM, 1 ví dụ điển hình cho con cái nhà ko có giáo dục, nó chửi e là thèm cặc, lồn, bướm lồn, cave, các a chị vô trang cá nhân của e , vô thống kê hỏi đáp sẽ thấy nhg lời thô tục của nó. Em đăng ko để kiếm điểm nhg để vạch trần bộ mặt của con đó, e ko cần điêm làm j, nhg nếu mn thấy đúng thì k cx đc. E ko bốc phốt con chó ấy , đang chỉ ra nhg đứa dốt nát, đi copy bài

AH
Akai Haruma
Giáo viên
6 tháng 9 2021

Lời giải:

$a^2+2b^2+ab=\frac{a^2}{2}+\frac{3b^2}{2}+\frac{(a+b)^2}{2}$
Áp dụng BĐT Bunhiacopxky:

$[\frac{a^2}{2}+\frac{3b^2}{2}+\frac{(a+b)^2}{2}](2+6+8)\geq (a+3b+2a+2b)^2$

$\Rightarrow \sqrt{a^2+2b^2+ab}\geq \frac{3a+5b}{4}$

Hoàn toàn tương tự với các căn còn lại suy ra:
$\text{VT}\geq \frac{3a+5b}{4}+\frac{3b+5c}{4}+\frac{3c+5a}{4}=2(a+b+c)$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
6 tháng 9 2021

Bạn xem lại đề xem có nhầm không?

15 tháng 8 2019

Áp dụng bất đẳng thức Mincopxki :

\(\sqrt{\left(a-b\right)^2+c^2}+\sqrt{\left(a+b\right)^2+c^2}\ge\sqrt{\left[\left(a-b\right)+\left(a+b\right)\right]^2+\left(c+c\right)^2}\)

\(=\sqrt{\left(2a\right)^2+\left(2c\right)^2}\)

\(=\sqrt{4a^2+4c^2}\)

\(=2\sqrt{a^2+c^2}\) ( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow\frac{a-b}{c}=\frac{a+b}{c}\Leftrightarrow a-b=a+b\Leftrightarrow-b=b\Leftrightarrow b=0\)

*) Chứng minh bđt Mincopxki cho 2 bộ số :

\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\)

\(\Leftrightarrow x^2+y^2+z^2+t^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge\left(x+z\right)^2+\left(y+t\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2+t^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge x^2+y^2+z^2+t^2+2xz+2yt\)

\(\Leftrightarrow\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge xz+yt\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(z^2+t^2\right)=\left(xz+yt\right)^2\)

\(\Leftrightarrow x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+2xyzt+y^2t^2\)

\(\Leftrightarrow x^2t^2-2xyzt+y^2z^2\ge0\)

\(\Leftrightarrow\left(xt-yz\right)^2\ge0\) ( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow xt=yz\Leftrightarrow\frac{x}{y}=\frac{z}{t}\)

15 tháng 8 2019

Dòng đầu viết lỗi rồi, ai tốt bụng sửa hộ tớ :

\(...\ge\sqrt{\left[\left(a-b\right)+\left(a+b\right)\right]^2+\left(a+c\right)^2}\) nha :)