K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

\(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a^2=\left(b+c\right)^2\\b^2=\left(c+a\right)^2\\c^2=\left(a+b\right)^2\end{matrix}\right.\)

\(P=a^2x+b^2y+c^2z=\left(b+c\right)^2x+\left(c+a\right)^2y+\left(a+b\right)^2z\)\(=\left(b^2x+c^2x+c^2y+a^2y+a^2z+b^2z\right)+2\left(bcx+acy+abz\right)\)\(=a^2\left(y+z\right)+b^2\left(z+x\right)+c^2\left(x+y\right)+2\left(bcx+acy+abz\right)=0\)ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\Leftrightarrow xbc+ayc+abz=0\)

\(\Rightarrow P=-a^2x-b^2y-c^2z\)

\(\Rightarrow a^2x+b^2y+c^2z=-\left(a^2x+b^2y+c^2z\right)\Rightarrow2\left(a^2x+b^2y+c^2z\right)=0\Rightarrow P=0\)

10 tháng 4 2017

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(=\left(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}\right)+\left(\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}\right)+\left(\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}\right)=0\)

\(=x^2.\frac{b^2+c^2}{a^2+b^2+c^2}+y^2.\frac{a^2+c^2}{a^2+b^2+c^2}+z^2.\frac{a^2+b^2}{a^2+b^2+c^2}=0\)

Vì \(a,b,c\ne0\) nên dấu =  xảy ra khi \(x=y=z=0\)

\(\Rightarrow A=x^{2003}+y^{2003}+z^{2003}=0+0+0=0\)

10 tháng 4 2017

\(A=x^{2003}+y^{2003}+z^{2003}=0+0+0=0\)

( Thì đằng nào 0 + 0 thì chẳng bằng 0 ) -_-"

~~~ Chúc bạn học giỏi ~~~

10 tháng 12 2015

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\Leftrightarrow x=y=z\)

M =\(\frac{y^{670.3}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)

Đề sai nhé  mẫu mũ 2010  => M =1  mới đúng

10 tháng 12 2015

Bài 20: 

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y; y = x

=> x = y = z

mà \(M=\frac{x^{670}.y^{670}.z^{670}}{y^{2012}}\)

\(\Rightarrow M=\frac{y^{670}.y^{670}.y^{670}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)

b) a + c = 2b

=> d(a + c) = 2bd

=> ad + cd = 2bd  (1)

Có: c(b + d) = 2bd

=> cb + cd = 2bd  (2)

(1);(2) => ad + cd = cb + cd

=> ad = cb

=> a/b = c/d

=> đpcm

đợi nghĩ nốt c đã

10 tháng 12 2015

ừ, thay chỗ M đi, thế x=y=z vào, rõ là giang biết mà ko làm, làm đi chứ, tui đầu óc ngu si làm sai ko à

18 tháng 11 2019

\(\text{Đặt }\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)

Khi đó : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{a^2}{ak}+\frac{b^2}{bk}+\frac{c^2}{ck}=\frac{a}{k}+\frac{b}{k}+\frac{c}{k}=\frac{a+b+c}{k}\left(1\right);\)

\(\frac{\left(a+b+c\right)^2}{x+y+z}=\frac{\left(a+b+c\right)^2}{ak+bk+ck}=\frac{\left(a+b+c\right)^2}{k\left(a+b+c\right)}=\frac{a+b+c}{k}\left(2\right)\)

Từ (1) và (2) => \(\frac{a^2}{x}+\frac{b^2}{y}=\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\left(\text{đpcm}\right)\)

18 tháng 11 2019

hình như bạn ghi sai đề rồi kìa