K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(n\ne-4\)

Để A là số nguyên thì \(3n-5⋮n+4\)

=>\(3n+12-17⋮n+4\)

=>\(-17⋮n+4\)

=>\(n+4\in\left\{1;-1;17;-17\right\}\)

=>\(n\in\left\{-3;-5;13;-21\right\}\)

21 tháng 2 2018

Để \(A\) có giá trị nguyên thì \(\left(3n-5\right)⋮\left(n+4\right)\)

Ta có : 

\(3n-5=3n+12-17=3\left(n+4\right)-17\) chia hết cho \(n+4\)\(\Rightarrow\)\(\left(-17\right)⋮\left(n+4\right)\)\(\Rightarrow\)\(\left(n+4\right)\inƯ\left(-17\right)\)

Mà \(Ư\left(-17\right)=\left\{1;-1;17;-17\right\}\)

Suy ra : 

\(n+4\)\(1\)\(-1\)\(17\)\(-17\)
\(n\)\(-3\)\(-5\)\(13\)\(-21\)

Vậy \(n\in\left\{-3;-5;13;-21\right\}\)

17 tháng 4 2023

 

A= 3n-5/n+4 = 3(n+4)-17/n+4 (n ≠ -4)
Để A ∈ Z ⇔ 17 chia hết cho n+4 hay n+4 ∈ Ư(17)
⇒ n+4 ∈ {17; -17; 1; -1}
       n ∈ {13; -21; -3; -5}
Vậy n ∈ {13; −21; −3; −5}

4 tháng 5 2022

Ta có A= (3n +10)/(n+3)
= [ 3(n+3) +1 ] /(n+3)
= 3 + 1/(n+3)
Để A nguyên thì 1/(n+3) cũng phải nguyên
tức 1 phải chia hết cho n+3
=> n + 3 = 1 hoặc n + 3 = -1;
Trường hợp: n+3 = 1 => n = -2 khi đó A = 3 + 1 = 4
Trường hợp: n+3 = -1 => n = -4 khi đó A = 3 -1 = 2

 

31 tháng 12 2021

e tham khảo nhé

1 tháng 5 2023

A = \(\dfrac{6n-3}{3n+1}\) ( đk : 3n + 1 # 0  ⇒ n # -1/3)

\(\in\) Z ⇔ 6n - 3 ⋮ 3n + 1

           ⇒   6n + 2 - 5 ⋮ 3n + 1

           ⇒   2.( 3n + 1) - 5 ⋮  3n + 1

           ⇒                       5 ⋮ 3n + 1

          ⇒         3n + 1 \(\in\) { -5; -1; 1; 5}

          ⇒        n\(\in\) {-2; -2/3; 0; 4/3}

          vì n \(\in\) Z nên n \(\in\) { -2; 0}

          Vậy n \(\in\) { -2; 0}

             

NV
19 tháng 3 2023

\(\dfrac{5}{3n-1}\in Z\Rightarrow3n-1=Ư\left(5\right)\)

\(\Rightarrow\left[{}\begin{matrix}3n-1=-5\\3n-1=-1\\3n-1=1\\3n-1=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=-\dfrac{4}{3}\left(ktm\right)\\n=0\\n=\dfrac{2}{3}\left(ktm\right)\\n=2\end{matrix}\right.\)

Vậy \(n=\left\{0;2\right\}\)

NV
6 tháng 1

\(A=\dfrac{3n+1}{n-2}=\dfrac{3n-6+7}{n-2}=\dfrac{3\left(n-2\right)+7}{n-2}=3+\dfrac{7}{n-2}\)

A nguyên \(\Rightarrow\dfrac{7}{n-2}\) nguyên

\(\Rightarrow n-2=Ư\left(7\right)\)

\(\Rightarrow n-2=\left\{-7;-1;1;7\right\}\)

\(\Rightarrow n=\left\{-5;1;3;9\right\}\)

AH
Akai Haruma
Giáo viên
4 tháng 2

Lời giải:
Để $A$ nguyên thì:

$3n-5\vdots n+4$
$\Rightarrow 3(n+4)-17\vdots n+4$

$\Rightarrow 17\vdots n+4$

$\Rightarrow n+4\in \left\{\pm 1; \pm 17\right\}$

$\Rightarrow n\in \left\{-3; -5; 13; -21\right\}$