K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

Ta thấy : \(\frac{1}{2^2}< \frac{1}{3}\)

             \(\frac{1}{2^4}< \frac{1}{3}\)

                 ...

              \(\frac{1}{2^{100}}< \frac{1}{3}\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}< \frac{1}{3}\)

Vậy \(A< \frac{1}{3}\)

Chúc bạn học tốt :>

5 tháng 11 2018

A.\(4\)=\(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)

=> 4A-A=1-\(\frac{1}{2^{100}}\)

=> A=\(\frac{1}{3}\left(1-\frac{1}{2^{100}}\right)=\frac{1}{3}-\frac{1}{3}.\frac{1}{2^{100}}< \frac{1}{3}\)

1 tháng 7 2017

Ta có : \(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+......+\frac{1}{2^{100}}\)

\(\Rightarrow4A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^4}+.....+\frac{1}{2^{98}}\)

\(\Rightarrow4A-A=\frac{1}{2}-\frac{1}{2^{100}}\)

\(\Rightarrow3A=\frac{2^{99}-1}{2^{100}}\)

\(\Rightarrow A=\frac{2^{99}-1}{\frac{2^{200}}{3}}\)

Vì : \(\frac{2^{99}-1}{2^{200}}< 1\)

Nên : \(A< \frac{1}{3}\)

9 tháng 1 2016

this sentence extremely easy

5 tháng 8 2016

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A=\frac{1}{2^2}.\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

\(A< \frac{1}{2^2}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)

\(A< \frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(A< \frac{1}{4}.\left(2-\frac{1}{50}\right)< \frac{1}{4}.2=2\)

=> \(A< 2\left(đpcm\right)\)

6 tháng 8 2016

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A=\frac{1}{2^2}.\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

\(A< \frac{1}{2^2}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)

\(A< \frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(A< \frac{1}{4}.\left(2-\frac{1}{50}\right)< \frac{1}{4}.2=2\)

\(A< 2\left(đpcm\right)\)

11 tháng 11 2017

Ta thấy đc quy luật:

\(\frac{2^2-1^2}{2^2}=\frac{2+1}{2+2}=\frac{3}{4}\)

\(\frac{2^2-1^2}{2^2}+\frac{3^2-2^2}{6^2}=\frac{6+2}{6+3}=\frac{8}{9}\)

\(\frac{2^2-1^2}{2^2}+\frac{3^2-2^2}{6^2}+\frac{4^2-3^2}{12^2}=\frac{12+3}{12+4}=\frac{15}{16}\)

Nên:

\(\frac{2^2-1^2}{2^2}+\frac{3^2-2^2}{6^2}+\frac{4^2-3^2}{12^2}+...+\frac{100^2-99^2}{9900^2}=\frac{9900+99}{9900+100}=\frac{9999}{10000}\)

Hay A<1(đpcm)

21 tháng 8 2016

b) A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

   3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

3A-A=\(1-\frac{1}{3^{99}}\)

   2A=\(1-\frac{1}{3^{99}}\)

vì 2A<1

=> A<\(\frac{1}{2}\)

22 tháng 8 2016

anh làm cho e câu a nữa được không ạ

 

15 tháng 5 2017

Ta có \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

             \(=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+....+\left(\frac{1}{99}-\frac{1}{100}\right)\)

               \(\frac{1}{2}-\frac{1}{100}=\frac{49}{100}< \frac{3}{4}\left(đpcm\right)\)